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KVANTUMFIZIKA 100 - SZERKESZTOI ELOSZ0

'BME, Elméleti Fizika Tanszék, 2HUN-REN Wigner Fizikai Kutatokézpont, Budapest

A 2025-0s évet az ENSZ ,A Kvantum Nemzetkdzi Evé-
nek” nyilvanitotta, megiinneplend6 a kvantummechani-
ka sziiletésének 100. évforduldjat, és felhivva a figyelmet
a kvantumfizika és kvantumtechnolégia érdekességére,
hasznossagara. Ebbdl az tinneplésbél a Fizikai Szemle is
kiveszi a részét: a nyari duplaszamot a kvantumfizikanak
szenteltiik. Nyugaton és itthon kutat6 fizikuskollégakat
kerestlink meg, hogy szamoljanak be arrél, hogyan hasz-
naljak a kvantumfizikat, illetve hogyan fejlesztik tovabb.
A kvantumfizika legendéasan furcsa, kiilonds fogalmait
(szuperpozici6, dsszefonddas) mennyire értjilkk ma? Mi-
lyen technologiat lehet ezekre épiteni?

Mi is tortént 1925-ben, miért tessziik ekkorra ,a
kvantummechanika sziiletését”? A jelen szam els6 cikke
ezen sziiletés el6tt tiszteleg. 1925 el6tt mar tobben pro-
baltdk kvantumokra, diszkrét adagokra bontani a folyto-
nosnak tling természetet, sot, ezért Nobel-dijat is kapott
mar Max Planck (1918), Albert Einstein (1921), és Niels
Bohr (1922). Azonban ahhoz, hogy ezekbdl a prébalko-
z4sokbol koherens elmélet alljon 6ssze — az ,,4j kvantum-
mechanika” - teljesen 4j fogalmak, 0j egyenletek kellet-
tek. Ezeket gyors egymasutanban 1925-ben dolgozta ki
Werner Heisenberg, Max Born, Pascual Jordan, Erwin
Schrédinger - és persze sokan masok. Ahogy egy 4j el-
méletnél sokszor el6fordul, az eredeti cikkek (magyarul
a ,Kvantummechnika” c. 1971-es konyvben') sokszor
nehezen olvashatéak. A jelen folydiratszam els6 cikké-
ben Ldszlé Istvan (BME) segit megérteni a cikkeket és
kontextusukat.

Hogyan lehet 6sszeegyeztetni a fura kvantumos fo-
galmakat a jol megszokott hétkdznapi fogalmainkkal?
Cikkeink egy csoportja ezzel az Gn. kvantum-klasszikus
atmenettel foglalkozik. Szabdé Gdbor filozéfus azt mu-
tatja meg, hogyan lehet az oksagi viszonyt kvantumosan
altalanositani, és ezhogyan segit értelmezni a kvantumos
Osszefonddast. Poldnyi Janos a renormaliziciés csoport
fénytorésében vizsgalja, hogyan tud kiemelkedni egy
klasszikus makrovilag egy kvantumos mikrovilagbol.

! Janossy Lajos (szerk.), Gyorgyi Géza (ford.): Kvantummechanika.
Cikkgyijtemény. Akadémiai Kiadd, Budapest, 1971.

Asbéth Jinos a BME Elméleti Fizika Tanszé-
kének docense és a HUN-REN Wigner FK
Kvantumoptika és Kvantuminformatika Osz-
talyanak tudomanyos fémunkatirsa. A BME-n
kvantumos hibajavitisos elméleti kutatasaival az
,OpenSuperQPlus” EU-s projekthez jarul hoz-
z4, amely egy szupravezeté 1000 kvantumbites,
EU-s kvantumszamitogép épitését célozza.

ASBOTH JANOS: KVANTUMFIZIKA 100 — SZERKESZTOI ELOSZO

Asboth Janos'?

E-mail: asboth.janos @ttk.bme.hu

Mi a kapcsolata a vilagegyetem nagy léptéki szerke-
zetét leird relativitdselméletnek és a mikrovilagot jol le-
ir6 kvantumfizikanak? Didsi Lajos azt a lehet6séget vizs-
galja meg, hogy a Schrédinger-egyenletet Gjabb tagokkal
kiegészitve kozelitsiik az elméleteket, amivel el lehet
keriilni a hullamfliggvény ,beugrasat” (redukcidjat) is.
Németh Ddniel a masik irdnybol kozelit: abba ad bete-
kintést, hogyan lehet a kvantumos Monte Carlo-méd-
szereket haszndlni a térid6 kvantumstatisztikai leirdsara
az ugynevezett kauzalis dinamikus haromszogeléssel.
David Gyula és Cserti Jozsef a relativisztikus kvantum-
mechanika egy 1930-ban Schrodinger altal felismert ko-
vetkezményérdl ir: a részecskék ,reszketé mozgasarol”,
a Zitterbewegungrdl és arrol, ez hogyan jelenik meg
napjaink egyik sztaranyagaban, a grafénban.

Hogyan segit a kvantumtechnolégia véletlen szamok
eléallitaisahoz, és miért fontos ez? Schranz Agoston és
szerzOtdrsai az optikai elven mikodé kvantumos vélet-
lenszam-generatorokat tekintik at, és beszamolnak arrél
a rendszerr6l, amelyet a BME-n fejlesztenek. Krivdchy
Tamds a kvantumos 6sszefonddast haszndld Gj elméleti
otletekrdl szamol be, amelyekkel sokszereplds halézatok
tagjai tudnak egymassal biztonsdgos médon véletlen kul-
csokat megosztani.

Hogyan alkalmazhatunk gépi tanuldst és mas ma-
tematikai tritkkoket a kolcsonhaté részecskék hirhedst,
exponencialisan bonyolult hullimfiiggvényeivel vald
szamolashoz? Werner Miklos és Kapds Kornél az ugy-
nevezett matrixszorzat-allapotokkal valé kozelitést
mutatja be, amivel rugalmasan lehet az adott fizikai
modellhez legjobban illeszked6 palyakat kivalasztani,
és ami betekintést ad a modellben megjelend Gsszefo-
nddas szerkezetébe. Szabd Attila a gépi tanuldsos mod-
szereket tekinti at, amelyekkel a hullimfiiggvény fontos
adatait egy szamitoégépen megvalositott neuralis halo
tomoriti be - ezt dbrazolja cimlapunk is.

Miért akarunk ma kvantumszamitégépet épiteni, és
hogyan? A ,kvantumtechnolégia” sz6rél sokaknak ugra-
nak be ezek a kérdések, amelyekkel nemcsak akadémiai
kutatéintézetek, hanem nagy techcégek és startupok is
foglalkoznak ma vilagszerte, és ami dollarmillidrdokat
mozgat meg a tézsdéken is. Szamunkban 6t cikk foglal-
kozik ezzel a témaval.

Hogyan miikddnek a szupravezet6 nanoaramkorok-
kel megvaldsitott kvantumszamitégépek, hogyan épitik
ezeket? Gyenis Andrds azt ismerteti, hogyan kell a kvan-
tummechanikat ilyen szupravezeté nanoaramkorok
leirasdra haszndlni, és hogyan vezet ez a kvantumbitek
transzmonos és fluxéniumos megvaldsitisihoz. A mik-
roszkopikus alkotéelemek kvantumos leirasa az ilyen
milliméteres eszk6z0k esertében reménytelen, Ggyhogy
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mas utra van sziikség: az aramkor klasszikus egyenle-
teinek kvantdlasara. Kiirtdssy Olivér és szerzbtdrsai azt
irjak le, hogyan valésitjadk meg, és milyen mérésekkel
vizsgaljak ezeket az aramkoroket a BME-n, illetve,
hogy milyen ujfajta, topologikus kvantumbitekkel ki-
sérleteznek ott.

Milyen programokat érdemes futtatni a kvantum-
szamitoégépeken? Rakyta Péter azt irja le, hogyan lehet
gyorsitani az altala fejlesztett szoftverrel (SQUANDER)
az egyik ilyen programtipust, az ugynevezett variacios
kvantumaramkoroket - amelyek kvantumkémiai és
egyéb alkalmazasokkal kecsegtetnek. Pozsgay Baldzs
arr6l szamol be, hogy mar a mai meglehet6sen zajos
kvantumszamitégép-prototipusokkal is lehet Gj felfede-
zéseket tenni az integralhaté kvantummodellek szimu-

lalasa révén. Rakovszky Tibor azt mutatja meg, milyen (j
kérdések és 1j Osszefiiggések tarulnak fel, ha a statiszti-
kus fizika eszkozeivel vizsgaljuk a teljesen véletlenszerd
kvantumszamitégépes programokat (véletlen kvantu-
maramkoroket).

Amint az a fenti 6sszegzésbdl is lathatd, a Fizikai
Szemle még egy ilyen dupla szammal is csak betekintést
tud adni néhany 4j kvantumos kutatési iranyba, ered-
ménybe. Az érdekl6déknek figyelmébe ajanljuk még a
»Kvantumok vilaga” ismeretterjeszté el6adassorozatot,
amely idén szeptemberben az MTA-n lesz — errdl is ol-
vashatnak még szamunkban. Tovabbi kvantumos cikkek
vannak még el6késziilet alatt — remélhetSleg még az idei
évfordulés évben talalkozhatnak majd ezekkel a Fizikai
Szemle olvasoi.
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WERNER HEISENBERG ES A MATRIXMECHANIKA

Laszl6 Istvan

Budapesti Mlszaki és Gazdasagtudomanyi Egyetem, EIméleti Fizika Tanszék, Budapest

Amikor az egyetemen a kvantummechanikat tanuljuk,
el6szor a Schrodinger-egyenlettel és rajta keresztiil a
hullimmechanikéaval ismerkediink meg. A matrixmecha-
nika vazlatos ismertetésére szinte a bevezet6 kurzus vége
felé keriil sor az operatorok matrixelemeinek ismerteté-
sével a Hilbert-téren, amikor mar megoldottuk az 6sszes
alapveté kvantummechanikai problémat. Ekkor adédik
a kérdés, hogy Heisenberg hogyan tudta kitalalni a mat-
rixmechanikat anélkiil, hogy ismerte volna az operatorok
és a Hilbert-tér szerepét a kvantumos jelenségek leirasa-
ra. Nem beszélve arrol, hogy hogyan keriiltek el6 neki a
matrixok, amikor nem ismerte azok fogalmat sem. A ko-
vetkez6kben ezekre a kérdésekre probalunk valaszt adni.

A ,régi kvantummechanika”

A kvantummechanika felfedezéséhez vezet6 1t roviden
a kovetkezé [1]. Max Planck a feketetest homérsékleti
sugarzasat annak feltételezésével tudta megmagyarazni
1900-ban, hogy az iiregbe zart v frekvenciaji sugarzas
energidja csak a kv mennyiség egész szamu tobbszo6ro-
se lehet, vagyis nem folytonos, hanem kvantalt. Itt & a
Planck-4llandé. Igy jott ki a kisérleti eredmény, és Planck
reménykedett, hogy valamikor megtaldlja a helyes ma-
gyarazatot. Ezt a gondolatot Albert Einstein 1905-ben
alkalmazta a szabadon terjed6 elektromagneses hulla-
mokra, és a fényelektromos jelenséget ugy értelmezte,
hogy a v frekvenciaja fény hv energiat ad at a fémbe zart
elektronnak. A hv energiacsomag neve lett kés6bb a fo-
ton. Ezzel Einstein a fényt részecsketulajdonsaggal ru-
hazta fel, és ezért kapta Nobel-dijat 1921-ben.

Niels Bohr 1922-ben kapott Nobel-dijat 1913-ban
kozolt munkdjaért, amelyben ugy irta le a hidrogén-
atom elektromagneses sugarzasat, hogy posztulalta, ha
az elektron impulzusmomentuma a % = (h/21) mennyi-
ség egész szamu tobbszorose, akkor az atom, szemben
a klasszikus elmélettel, nem sugaroz. Ezeket a palyakat
nevezte stacionarius palyaknak, és sugarzas kibocsatasa
vagy elnyelése akkor torténik, amikor az elektron atke-

Ldszl6 Istvdn fizikus, cimzetes egyetemi tanar
a BME Fizikai Intézet Elméleti Fizika Tanszé-
ken, az MTA doktora. Kutatisi teriilete a mo-
lekulafizika, fullerének, nanocsovek, kémiai
grafelmélet és szoros kotésti molekuladinamikai
szamitisok.

LASZLO ISTVAN: WERNER HEISENBERG ES A MATRIXMECHANIKA

E-mail: laszlo@eik.bme.hu

riil egyik stacionarius palyarol a masikra. A kisugarzott
vagy elnyelt sugarzas v frekvenciajara pedig igaz, hogy
hv megegyezik a két palya energidjanak a kiilonbségével.

Amikor Louis de Broglie 1923-ban a hulldim-részecs-
ke kettds természetet kiterjesztette az addigi részecskék-
re is, létrejott a régi kvantummechanika.

A régi kvantummechanikdhoz tartoztak a Bohr-mo-
dellbél kiolvasott, igynevezett Kramers-szabalyok. Ezek
azt mondjak meg, hogy hogyan kell megvaltoztatni a
klasszikus fizikai formuldkat, hogy a kisérleti eredmé-
nyeket le tudjak irni. A Bohr-Kramers-Slater-elmélet
[2] alapjan feltételezték tovabba, hogy bar az atomok
stacionarius allapotban nem sugaroznak, de stacionarius
allapotok kozotti atmenetek soran és ,virtualis rezgése-
ket végezve” sugarzast bocsatanak ki, illetve nyelnek el.

A régi kvantummechanikanak sikeriilt néhany atomi
tulajdonsagot megmagyarazni, de nem adott szamot pél-
daul a molekulak és a szilardtestek elektromos vezetési
tulajdonsagairol, raadasul tele volt ad hoc 1épésnek tlin
mesterséges gondolattal, fogalommal.

Az ,Gj kvantummechanika” sziiletése:
Heisenberg

A napjainkban is ismert #j kvantummechanikdnak a meg-
sziiletését Werner Heisenberg (1901-1976) 1925-ben ko-
z0lt matrixmechanikajatél és Erwin Schrodinger (1887-
1961) 1926-ban koz6lt hullimmechanikéjatol szamitjuk.
Megjelenésiik utan hamarosan bebizonyitottak, hogy a
két kvantummechanika ugyanaz, csak mas matematikai
formaban vannak megfogalmazva.

Werner Heisenberg Wiirzburgban sziiletett, és édes-
apja 1909-t6] a miincheni egyetemen bizantinolégus-
ként a kozép- és Gjgordg nyelv tandra volt. Igy fia mar
gimnazistakoraban gorogiil olvasta Platont. Heisenberg
Sommerfeldnél doktoralt 1923-ban. A doktori vizsga
nem sikeriilt valami fényesre [3], mert az 1911-ben No-
bel-dijjal jutalmazott Wien a kisérleti részre a lehetd
leggyengébb, de még nem a bukast jelentd jegyet adta,
viszont Sommerfeld az elméleti rész kidolgozasa miatt a
lehet6 legjobbat. A disszerticié témaja igen nehéz volt:
»Folyadékok dramlasanak stabilitasa és turbulencidja”.
Heisenberg apja megkérte James Franckot, az 1925. év
Nobel-dijasat, hogy tanitsa meg fidnak a kisérleti fizikat.
Néhany laboratériumi latogatas utan Franck kijelentette,
hogy szerinte az lesz a legjobb, ha patronaltja elméleti fi-
zikus lesz.

Heisenberg attdl tartott, hogy gyenge vizsgija mi-
att Max Born nem fogja 6t asszisztensként alkalmazni,
mint Pauli utédja. Born latva Wien triikkkos kérdéseit,
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felfogadta 6t, és késSbb igy emlékezett réla: ,Ugy nézett
ki, mint egy parasztfit, rovid nadragban, széke hajjal,
fényes tekintettel és elragadé megjelenéssel. Feladatait
komolyabban vette, mint Pauli, és nagy segitség volt
nekem. Hihetetlen gyorsasiga és pontossaga lehetévé
tette szamara, hogy hatalmas munkat tudott elvégezni
kiilonosebb eréfeszités nélkiil” [4]. Born elsé feladatként
az anomadlis Zeeman-effektus problémajit adta Heisen-
bergnek, amit 6 sikeresen megoldott. Kortarsai furcsa-
nak tartottak, hogy Y2 értéki kvantumszamot vezetett
be. Itt, Gottingenben habilitalt 1924-ben, és tobb alka-
lommal dolgozott 1924-26-ban Niels Bohr asszisztense-
ként a koppenhdgai egyetemen.

Heisenberg els6 cikke a matrix-
mechanikaroél

Heisenbergnek a matrixmechanikardl szol6 elsé cikke
1925-ben jelent meg, melynek cime Kinematikai és me-
chanikai Osszefiiggések kvantumelmeéleti dtértelmezésé-
rél [5, 6]. Errdl a kozleményrdl a kovetkezdt irta Steven
Weinberg, aki 1979-ben kapott Nobel-dijat az elektro-
magnességet és a gyenge kolcsonhatast egyesit6 elektro-
gyenge kolcsonhatas elméletének a kidolgozasaért: ,Ha
az ember misztikusnak taldlja, amit Heisenberg tett,
nincs egyediil. En mar tobb alkalommal megprébaltam
elolvasni azt a cikket, amit Heisenberg irt visszatérve
Helgolandrol, és bar gy gondolom, hogy értem a kvan-
tummechanikat, sohasem értettem meg motivacidit,
melyek a cikkében talalhaté matematikai lépéseket in-
dokoltdk. Az elméleti fizikusok legsikeresebb munkaik-
ban a kovetkezd szerepek egyikét jatszak: 6k vagy bol-
csek vagy mdigusok... Altalsban kénnyd megérteni a
bolcs fizikusokat, de a magus fizikusok cikkei gyakran
érthetetlenek. Ilyen értelemben Heisenberg 1925-0s
cikke tiszta magia” [7]. Jammer megallapitja [8], hogy az
atmenet a régi kvantummechanikabdl az djba rendkiviil
gyors volt, és nem egyetlen gondolatfolyamat volt, nem
is ,felfelé halad6 1épcs6”, hanem ,0sszefiiggd sikatorok
szovevénye”.

MacKinnon feltételezte [9], hogy Heisenberg 1925
juniusdban és jaliusiaban, amikor hires cikkéhez készitet-
te aszamitasokat, val6jaban a virtualisoszcillator-modellt
probalta alkalmazni a hidrogénatomra. Feltételezését
Heisenberg Kronighoz 1925. junius 5-én irt levelével
indokolja. Ebben a levélben van egy dbra [9, 10], amely
szerint a K Coulomb-erét szamolta ki egy P pontban,
melytdl a tavolsagra merdlegesen rezgett egy dipdlusosz-
cillator. Heisenberg itt megmutatta, hogy az oszcillator
x(#) kitérésének Fourier-egyiitthatdival ki lehet fejezni
a K er6 Fourier-sorat az oszcillator kitérésének fliggvé-
nyében. Ez egy tipikus gondolat a virtualis rezgéseket
tartalmazé Bohr-Kramers—Slater-elmélet szellemében.
MacKinnon szerint Heisenbergnek nem sikeriilt a hid-
rogénatom sprektumat megmagyarazni. Ekkor egysze-
riisitette a feladatot, és csak a rezgésekkel foglalkozott.
Miutan elvégezte a szamitasokat, akkor vette észre, hogy
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egy altalanos moédszert talalt az 4j kvantummechanika-
ra. Valoszind, ez a feltételezés nem lehet tavol a valosag-
tdl, mert MacKinnon cikke végén koszonetet mondott
Heisenbergnek, hogy elolvasta annak egyik valtozatat.
Ha nem értett volna egyet az abban foglaltakkal, bizo-
nyara tiltakozott volna. Maga Heisenberg is irja Pauli
tiszteletére irt emlékcikkében [11], hogy ,ElGszor 1925
tavaszan probaltam meg a hidrogén spektruménak in-
tenzitasi képletéhez eljutni a Kepler-palya Fourier-sora-
nak tanulmanyozdsaval, hogy konnyebben kitalalhassam
a helyes kvantumelméleti intenzitasképleteket. A Kep-
ler-probléma tdl nehéznek bizonyult ehhez, de felme-
riilt az otlet, hogy az dtmeneti elemek dsszessége éppugy
reprezentdlja az elektron koordindtdit, mint a klasszikus
fizikaban a Fourier-sor”.

Heisenberg cikkének elején kijelenti, hogy ,a for-
malis szabalyokkal szemben, melyeket altaldban a
kvantumelméletben megfigyelhet6 mennyiségek (pl. a
hidrogénatom energidja) kiszamitasara hasznalnak, az
a stlyos kifogas emelhetd, hogy e szamitdsi szabalyok
lényeges alkotdelemként olyan mennyiségek kozott
fennallé Osszefiiggéseket tartalmaznak, amelyek - Ggy
latszik - elvileg megfigyelhetetlenek (mint pl. az elekt-
ron helye, keringési ideje)” [5, 6].

A megfigyelheté mennyiségek kozti alaposszefiig-
gésként Heisenberg a Bohr-féle frekvenciafeltételre épit.
Ennek értelmében amikor az elektron egy n-edik sta-
ciondrius palyarol (energidja W(n)) egy (n - a)-adik sta-
cionidrius palyara (energidja W(n — a)) megy 4t (ahol n
és n — a egész szam), akkor sugarzast bocsat ki, aminek
v(n, n - a) frekvenciajat, azaz w(n, n — a) korfrekvenciajat
igy adjuk meg:

wo(n,n—a)

o :v(n,n—a):l[W(n)—W(n—a)} (D)

h
Itt és a tovabbiakban is Heisenberg jeloléseit alkalmaz-
zuk, kivéve a got betiiket, melyeket a megfelel6 latin be-
tlikkel helyettesitiink.

A Bohr-féle frekvenciafeltétel akkora szakitast jelent
a klasszikus mechanikaval, hogy a klasszikus mechanika
érvényessége megsziinik a legegyszeriibb kvantumelmé-
leti problémak (atomi tulajdonsagok) targyalasa esetén
is. A klasszikus mechanikaval valé kapcsolatra mégis
sziikség van, e tekintetben Heisenberg Born cikkére [12]
hivatkozik, ahol a szerz6 csak ugy tudja a korresponden-
ciaelvvel megkapni a helyes kvantummechanikai kife-
jezéseket, ha a nagy kvantumszamok esetén sziikséges
derivalasokat kis kvantumszam estén differenciahanya-
dossal helyettesiti [8, 12]. Vagyis

8CD(n) o CD(n+a)—CD(n)
on a

, ()

ahol @ valamely kvantumszamtél fliggé mennyiség.
Heisenberg az atom sugarzasanak leirasat célozta az
Uj kvantumelméleti mechanika megalkotasaval, a Kra-
mers-féle diszperzids elméletre alapozva. Kramers [13]
a Bohr-Kramers-Slater-elmélet [2] alapjan az atomok
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polarizacidjara kapott egy kifejezést, mikdzben az atom-
rol feltételezte, hogy kiilonboz6 frekvenciaju oszcilla-
torokbdl épiil fel. A klasszikus fizika torvényei alapjan
kiszamolta a polarizacidt, majd az oszcillatorok frekven-
ciait az (1) Bohr-féle frekvenciafeltétellel helyettesitette,
igyelve a korrespondenciaelvre, azaz arra, hogy nagy
kvantumszamok esetén megkapja a klasszikus formula-
kat.

Heisenberg a tovabbiakban megadja, hogy a klasszi-
kus fizikaban hogyan néz ki a mozgé elektron sugarzasa
a hullimzoénaban. Vagyis

e
E= rx(rxv 3
, e () 3)
és
H= ¢ VXr 4)
rZCZ

az elektromos és a magneses térerésség elsé rendben.
Ezekhez a kovetkez6 kozelitésben tovabbi tagok jarul-
nak, példaul
v, ()
re
illetve magasabb rendben

%1)1/2 (6)
rc
alaku tagok. Az elektron toltése e, v a sebessége és r a ta-
volsaga a kiszemelt ponttdl, ahol a sugarzast megadjuk.
Ezutan kovetkezik néhany mondat, amelyek problé-
mat okozhatnak els6 olvasasra. , A klasszikus elméletben
az (5)-(6) magasabb rendd kozelitések egyszerien Kki-
szamithatdk, ha az elektron mozgasa, illetve annak Fou-
rier-el6allitasa adott, igy tehat valami hasonlét varunk
a kvantumelméletben is. [...] A kérdés a legegyszertibb
alakban igy fogalmazhaté meg: Legyen adott az x(7)
klasszikus mennyiség helyére 1ép6 kvantummechani-
kai mennyiség! Mely kvantummechanikai mennyiség
foglalja el ekkor x(£)* helyét?” Itt Heisenberg sejteti gon-
dolatmenetének indokait, mikdzben néhany mondattal
korabban azt tanacsolta, hogy fel kell adni reményiinket
az eddig meg nem figyelt mennyiségek — mint az elektron
helye — megfigyelésére, és csak megfigyelhet6 mennyi-
ségek kozott fennalld osszefiiggésekkel foglalkozzunk.
Most mégis az x(2) és x(2)* klasszikus mennyiség helyére
1ép6 kvantummechanikai mennyiségeket keresi?
Heisenbergnek, mikézben Kramers-szel elkészitette
kozos cikkiiket [14], timadhatott az a gondolata, hogy ha
a klasszikus E elektromos tér Fourier-sora

E(n,t)= Z:ﬂ E, (n)ei“’(”)w , (7)

akkor ennek kvantummechanikai alakja a Kramers-el-
mélet [11] szerint

®© io(n,n—a)t
E(n,t)zza:%E(n,n—a)e”( ot (8)
Az |E(n,n — a)|* pozitiv a esetén a sugarzas kibocsa-
tasanak, negativ a esetén pedig sugirzas elnyelésének
az intenzitasa. Heisenberg nem irja fel a (8) egyenletet,
mert szerinte ennek nincs értelme, de végig ugy szamolt,
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mintha felirta volna minden n-re. Helyette azt mondja,
hogy az

E(n,n _ a)eia)(n)n—a)t (9)

mennyiségek sokasdga fejezze ki az elektromos tér kvan-
tummechanikai alakjat. Most persze egy kicsit elére-
szaladtunk. Kollégaihoz irt levelei alapjan valdszind,
hogy Heisenberg ekkor még nem latta ilyen vildgosan
a kvantumos mennyiségek elddllitasanak szabalyat, de
cikkét konnyebben megértjiik, ha a fentieket elérebo-
csatjuk.

Tehat Heisenberg, amikor azt mondja, hogy az tj
kvantummechanikaban nem foglalkozunk olyan meny-
nyiségekkel, melyeket nem figyelhetiink meg, ezen azt
érti, hogy ezeket valami kvantummechanikai mennyi-
ségekkel kell helyettesiteni, és amivel felhagyunk, ezek
klasszikus értelmezése. Ezt abbodl latjuk, ahogyan felépiti
kvantummechanikajat. El6szor veszi az adott meny-
nyiség klasszikus alakjat, azt Fourier-sorba fejti, majd a
Kramers-szabalyok és az (1) Bohr-féle frekvenciafeltétel
alapjan elkésziti a megfelel6 kvantummechanikai meny-
nyiséget.

Ha tehat csak egydimenzits rendszerekkel foglalko-
zunk, akkor

x(nt)=3" a,(n)e” ™" (10)

fejezi ki a mozgast klasszikus értelemben. A (10) Fourier-
sorhoz a kvantummechanikaban rendeljitk hozza az

io(n,n—a)t (1 1)
mennyiségek sokasagat. Heisenberg itt megjegyzi, hogy
a (8) egyenletnek megfelel6 alak azért nem értelmes,
mert az n és az n - o mennyiségek egyenranguiak (11)-
ben. Vagyis a (10)-ben 7 rogzitett, és n — a valtozik, szem-
ben a (11)-gyel, ahol mindkét index valtozik. Ennek elle-
nére a (11) matematikai tulajdonsagait a (10) matematikai
tulajdonsagaibdl olvassa le, és amikor x(f)-rél beszél,
akkor gondolatban felirja (10)-et minden n-re. Ez is arra
utal, hogy Heisenberg eredetileg a Bohr-Kramers-Sla-
ter-elmélet alapjan az n-edik nivé koriili virtualis rezgé-
seket irta fel. Igy, ha az x(¢)? Fourier-sorara igaz, hogy

x(n,t)z _ Z::iwz:;waa (n)ei(u(n)atay (n)eiw(n)}/t, (12)
éshaf = a+ y, akkor
x(n,l‘)2 = z;ﬂc by(n)e” ™",

a(n,n—a)e

(13)
ésigy

by(n,t)e " :Z:?waa(n)aﬂ,a(n)e"”(")(mﬁ*“)t. (14)

A (12)-(14) egyenletekbdl Heisenberg ,magus” azt
olvasta ki, hogy az x(#)*> kvantummechanikai mennyi-
ségét a kovetkez6 mddon kaphatjuk meg x(#) kvantum-
mechanikai mennyiségébdl:

b(n,n _ ﬂ)eiw(n)nfﬂ)t
= Zj:iwa(n,n —a)a(n—a,n— Be“ """,

(15)
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Itt Heisenberg feltételezte, hogy igaz az
(16)

Bohr-féle frekvenciafeltétel. Ezzel elérte, hogy a kvan-
tummechanikai mennyiségekre ugyanazok az algebrai
Osszefiiggések érvényesek, mint a klasszikus mennyi-
ségekre. Rajott arra is, hogy a (15) egyenlettel definialt
szorzas nem kommutativ.

A (11) és (15) kvantummechanikai mennyiségek de-
finidlasa utan latszik, hogy x(#) (11) kvantummechanikai
mennyiségének ismeretében annak id6 szerinti derivala-
saval megkapjuk a v = % (¢) klasszikus sebesség

o(n,n— )= on, n—a)+on—-a,n— L)

io(n,n-a)t ( 17)
kvantumos alakjat, és az (5)-(6) mennyiségek kvantu-
mos alakjanak hozzdaddséval az elektromos tér kvantu-
mos alakja megmarad a (9) egyenlettel felirt alakban.

io(n,n—a)a(n,n-a)e

Dinamika

Heisenberg az

£+f(x)=0 (18)
mozgasegyenlet kvantummechanikai megoldasaval fog-
lalkozik, és feltételezi, hogy a mozgas periodikus. Bohr
utan feltételezi tovabba, hogy a mozgasra igaz a

¢ pdg=midc=J =nh (19)

kvantumfeltétel. Az egyediili valtoztatds Bohr erede-
ti gondolatmenetéhez képest, hogy az x(¢) és a v = x(2)
klasszikus mennyiségek helyett a (11) és (17) kvantum-
mechanikai mennyiségeket alkalmazza a Kramers-sza-
bélyok figyelembevételével.

Foglalkozzunk el8szor a kvantumfeltétellel! Feltéte-
lezve a periodikus mozgast, klasszikusan irhatjuk:

x(n,t)= Z:}waa(n)eiw("m.

Ezt az alakot behelyettesitve (19)-be adddik, hogy

(20)

Cj)ma'cdx =2nm Z:i_w|aa(n)|2 a’o(n)=nh. (21)

Heisenberg szerint (21) jobb oldala az n-t6l valé fliggés
miatt nem felel meg a korrespondenciaelvnek, ezért en-
nek 7 szerinti derivaltjat veszi, vagyis

o ol a)h

Attérve a kinematikai részben definialt kvantummecha-
nikai valtozdokra (22)-bdl kapjuk, hogy

w d 2
ZRmZa?waa“aa(n,n - a)| wo(n,n— a)) =h.  (23)

A bal oldal derivaltjat (2) szerint atalakitva kapjuk a
Bohr-féle kvantumfeltétel alakjara, hogy

4”’”2::0““(” + 0!,71)|2a)(n +a,n)

_ |a(n,n—a)|2a)(n,n—a)}:h. (24)
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Ezutan Heisenberg legegyszer(ibb példaként az an-
harmonikus oszcillitor kvantummechanikai probléma-
javal foglalkozik. Itt a klasszikus (18) egyenlet alakja

¥+aix+Ax’=0. (25)

Ennek elkésziti a kvantummechanikai alakjat a (11)
kvantummechanikai alaknak és id6 szerinti masodik
derivaltjanak behelyettesitésével. A kapott egyenlet és
a (24) Bohr-féle kvantumfeltétel segitségével A szerint
perturbaciészamitast alkalmazva kapja az a(n, n - 1) at-
meneti egyiitthatokat.

Az irodalomban t6bben proébaltik rekonstrualni
Heisenberg gondolatmenetét, példaul Tomonaga [15],
Mehra és Rechenberg [16], valamint Aitchison, Mac-
Manus és Snyder [17]. Ezen ut6bbi szerzék véleménye
szerint azért nehéz Heisenberg eredeti cikkét megérte-
ni, mert nem ismerjiik azokat a szamitasokat, melyeket
elvégzett, ezért kozlik a szerintiik fontos szamitasokat.
Az atmeneti egylitthatok ismeretében Heisenberg ki-
szamitja az

mx’ ,x8 mA o,
+moy—+—ux' =w
2 4

(26)

teljes energiat a (11) kvantummechanikai mennyiségek
felhasznalasaval, és azt kapja, hogy a A* nagysagrendd
tagokig az energia diagonalis elemeinek értéke

(n+1jh(o0 S(nz+n+1]h2
2 2
+1

2n 641> wpm

n 51, 5 21
—ﬂzﬁ 17n3+—n2+—9n+— ,
512 wym 2 2 2

w =

(27)

majd megjegyzi, hogy néhany nem diagondlis energia-
elemre nulla értéket kapott, de nem tudja bebizonyitani,
hogy minden nem diagonalis elem nulla. A A = 0 értékre
megkapjuk a harmonikus oszcillator kvantummechani-
kai energidjat a nullponti energiaval egyiitt.

Fontos megjegyezni, hogy akkor még nem lehetett
tudni, hogy mi a kvantummechanikai helyes energia.
Heisenberg onnan gondolta, hogy j6 nyomon jar, hogy a
kapott (27) kifejezés megegyezett a Kramers-Born-féle
modszerrel kapott értékkel [12].

Heisenberg els6 cikkének kozvetlen hatdsa

Born és Jordan cikke

Amint a kézirat elkésziilt, 1925. julius 11-én vagy 12-én,
Heisenberg odaadta azt Bornnak, hogy mondjon réla
véleményt, alkalmas-e publikaldsra [4]. K6zben megje-
gyezte, hogy keményen dolgozott rajta, de néhany alap-
veté megfontoldsnal tovabb nem jutott. Born megigérte,
hogy megnézi, mit tud tenni, de mivel faradt volt, csak
néhany nap miulva kezdett vele foglalkozni. KésGbbi
visszaemlékezésében igy foglalja 6ssze Heisenberg kéz-
iratdnak tartalmat:
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»Amikor néhany nap miulva elkezdtem olvasni, el-
bilivolének tartottam. Heisenberg bevezette az dtmeneti
amplitudo fogalmat, és kifejlesztett egy rajuk vonatkozo
szamitasi modszert analogidban a klasszikus rezgé rend-
szerekkel és azok harmonikus komponenseivel (Fourier-
sorok). [...] Ezutan javasolta, hogy felejtsiink el mindent a
sorokrol, és csak az atmeneti amplitaddkat tekintsiik, és
arajuk talalt szorzasi szabalyt. [...] Alegmerészebb lépése
az volt, hogy atmeneti amplitiddt rendelt a g koordina-
tahoz és a p impulzushoz is. Mély benyomast keltettek
bennem Heisenberg megfontolasai, melyek nagy lépést
jelentettek abban a tudomanyos programban, amin dol-
goztunk.” [3]

Abban az id6ben irta Einsteinnek: ,Heisenberg ha-
marosan megjelend munkdja nagyon misztikusnak td-
nik, de biztos, helyes és mély...” [3].

Miutan Born elkiildte Heisenberg kéziratat publika-
lasra, elkezdett annak tartalman gondolkodni. Az egyik
reggel rajott, hogy itt valdjaban a matrix fogalma lett
bevezetve a kvantummechanikai mennyiségek leirasa-
ra. El6szor Paulit kérte meg, hogy dolgozzanak egyiitt
a felmeriilt problémak megoldasan. Pauli érdekesnek és
fontosnak tartotta Heisenberg eredményeit, de nem any-
nyira, hogy egyiittm(ikodjon Bornnal a kérdés szerinte
felesleges elmatematizaldsaban [3]. Erdekes, hogy akkor
még mennyire szokatlan volt a matrixok alkalmazasa a
fizikaban. Végiil Born Jordannal egyiittmikodve dol-
gozott a cikken, atirtak, kiegészitették és pontositottak
Heisenberg eredményeit [18].

A (11) jeldlést

a(n, m) e@tmt (28)

alakban irtdk. Igy a helykoordinatit és az impulzust a
kvantummechanikiban leir6 q és p matrixok matrix-
elemei a kovetkez6k

Gun = 4(n, m)e® ™" (29)

és

Dum = p(n, m)etnm (30)

Megmutattdk tovabba, hogy a (24) Bohr-féle kvan-
tumfeltétel ekvivalens a

pq - qp = (7/2m)1 (31)
felcserélési relacioval, ahol I az egységmatrix. Ez egyuttal
azt is mutatja, hogy a Bohr-modellben alkalmazott kvan-
tumfeltétel milyen mély feltételezés volt.

Dirac cikke

Kapica, egy szovjet fizikus, amikor Rutherford labora-
tériumaban tartézkodott Cambridge-ben, szervezett egy
szeminariumsorozatot, ahol kotetleniil mindenki hoz-
zaszolhatott és kérdezhetett. Ez volt a Kapica-klub [19].
Itt tartott Heisenberg el6adast 1925 juliusiaban. El6a-
dasanak cime ,Termzoolégia és Zeemanbotanika” volt.
Bar ennek témdja a Zeeman-effektus, roviden beszélt
legjabb, kvantummechanikai eredményeirdl is. Dirac
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nem vett részt az eldadason, de eljutott hozza Heisenberg
cikkének egy kézirata. El6sz6r nem tilint neki érdekes-
nek, azonban kb. két hét mulva rdjoétt, hogy a kvantum-
mechanika szempontjabdl fontos dolgokat tartalmaz [3].
Miutan megértette Heisenberg gondolatmenetét, 6 is
bevezette a matrixjeloléseket — anélkiil, hogy megemli-
tette volna ezt a fogalmat. A kvantummechanikai meny-
nyiségek szorzasat Heisenberg-szorzdsnak nevezte, és
sok dologra rajott, amit Born és Jordan is felfedezett [18].
Uj eredménye [20], hogy a Born-féle kvantumfeltétel 4l-
talanos alakja

AB—BA:&{A)B}Zi Z 6_A6_B_6_B&_A ,(32)
2n 2n\ ="\ 0q, Op, 0q, Op,

ahol A és B az A és B klasszikus fizikai mennyiségek
kvantumos alakja és {4, B} a Poisson-féle zardjeles ki-
fejezés. Tehat

qus _qsqr = 05

DrPs— Ds D =0, (33)

q.p.— P4, = O il
21

Ezeket most Heisenberg-féle felcserélési relacidknak
hivjuk.

A hiromemberes cikk

Born, Heisenberg és Jordan altalanositotta Heisenberg
f =1 szabadsagi fokra vonatkoz6 alapfeltevéseit tetsz6-
legesen sok, f > 1 szabadsagi fokd rendszerekre [21].
Kidolgoztik a perturbaciéelméletet kvantummechani-
kai rendszerekre. Ok is belattik a (33) dsszefiiggéseket.
Kanonikus transzformaciokat vezettek be, melyekre to-
vabbra is fennallnak a (33) osszefiiggések. Megmutattak,
hogy ha ez a transzformacié diagonalis alakra hozza az
energia kvantummechanikai alakjat, akkor a diagona-
lis matrixelemek megegyeznek a kvantummechanikai
rendszer energianivdival. Ezzel bevezették a sajatérték
meghatarozasanak feladatit a kvantummechanikaban.
Felirtak az impulzusmomentum matrixat, és megoldot-
tdk annak sajatérték-problémadit. Erre a cikkre kés6bb
masok ugy hivatkoztak, mint a hiromemberes munka
(Dreimiannerarbeit).

Pauli cikke

A haromemberes cikknek és az 6sszes tobbi, az 1j kvan-
tummechanikat targyal6 eddigi kozleménynek volt egy
zavar6 hidnyossiga. Az 4j kvantummechanika médsze-
reivel eddig még nem sikeriilt kiszamitani a hidrogén-
atom energiaszintjeit. Heisenberg elsé, a matrixmecha-
nikarol szo6lo6 publikiacidjaban mar megemliti az ezzel
kapcsolatos problémat [5]. Az okozta a nehézséget, hogy
a hidrogénatomnal a kinetikus energia periodikus moz-
gasnak felel meg, de a k/r alakt potencialis energia nem
periodikus. Igy a kinetikus energiat Fourier-sorba fejt-
hetjlik, de a potencialis energia felirasahoz Fourier-in-
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tegralra lenne sziikség. A kinetikus energia felirasahoz
tehat diszkrét, a potencialis energidhoz pedig folytonos
indexl matrixokra lenne sziikség. Ezt a problémat el6-
szor Paulinak sikeriilt megoldania [22]. Azt hasznalta ki,
hogy a k/r potencidl estén az

A=pxL-mk(r/r) (34)

Lenz-vektor is mozgasallando. Itt p, L és r a klasszikus
impulzus-, impulzusmomentum- és helykoordinata-
vektor. Heisenberg a kovetkezd szavakkal reagalt az 1j
eredményre: ,Valdszinlileg nem kell neked leirnom,
hogy mennyire 6riilok a hidrogénatom 4j elméletének.”
[3] A fizikusok tobbségét Pauli cikke gy6zte meg, hogy
igaz a kvantummechanika Gj elmélete.

Schrodinger hullimmechanikaja
és a matrixmechanika kapcsolata

Mikozben folyt Heisenberg gondolatainak értelmezése
és tovabbfejlesztése, megjelent Schrodinger cikke, mely-
ben egy teljesen mas leirast adott a kvantummechanikai
jelenségek targyalasara [23]. Ez volt a hullimmechani-
ka, és azon belill a Scrodinger-egyenlet megjelenése.
A munka a kdvetkez6 gondolattal kezd6dott: ,Ebben a
kozleményben mindenekelStt azt kivanom kimutatni
a hidrogénatom legegyszer(ibb (nem relativisztikus és
perturbdlatlan) esetére, hogy a szokasos kvantumfelté-
tel helyettesithetd egy olyan kovetelménnyel, amelyben
nincs 26 egész szdmokrol. Igy sokkal természetesebb
moédon, a rezgé hiur csomoédpontjainak szamahoz ha-
sonléan adoédik az egészszamusig.” Tehdt, szemben
a matrixmechanikaval, itt mar az elsé kozleményben
megjelenik a hidrogénatom problémajanak a megoldasa.
Schrodinger hamarosan kozli kovetkez6 cikkét, sokat-
mondd cimmel: A Heisenberg-Born—Jordan-féle kvan-
tummechanika kapcsolata az enyémmel [24]. Az egyik
labjegyzetben megjegyzi, hogy elméletének kidolgoza-
sara az 0sztonzést de Broglie disszertacidja [25] és Ein-
stein végtelenill messzire tekint6 megjegyzései adtik,
majd kitér arra, hogy miért nem hivatkozott korabban
Heisenberg cikkére: ,Nem tudok arrél, hogy elméletem
Heisenbergével barmiféle genetikus kapcsolatban allna.
Elméletérdl természetesen tudomasom volt, az azonban
a transzcendes algebra igen nehézkesnek latsz6 mod-
szerei és a szemléletesség hidnya folytdn elriaszto, hogy
azt ne mondjam: visszataszito hatast tett ram.” [24] Vé-
giil sikeriilt legy6znie ellenallasat, és operatorok beveze-
tésével megmutatta, hogy a két elmélet matematikailag
ekvivalens. Megmutatta, hogy a q; hely- és p, impulzus-
operatoroknak ki kell elégiteniiik a (33) felcserélési rela-
cidkat, és a tobbi operator, koztiik az energia operatorais
- ami bizonyos feltételek esetén a H Hamilton-operator
- el64llithatd ezen operatoroknak a klasszikus fizikaban
megismert fliggvényei segitségével. A Heisenberg altal
bevezetett kvantummechanikai mennyiségek a megfe-
lel6 fizikai mennyiségekhez rendelt operatoroknak egy
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teljes ortogonalis fliggvényrendszeren vett mdtrixai.
Amikor korabban az adott klasszikus mennyiséghez ren-
delt kvantummechanikai mennyiségekrdl beszéltiink,
beszélhettiink volna operatorokrol is, de ezt Heisenberg
még nem tudhatta.

Hatra van még, hogy belassuk, a Heisenberg altal be-
vezetett matrixok éppen a megfelel6 kvantummechani-
kai operatorok matrixai. A kovetkezékben a napjainkban
szokasos jelolést hasznaljuk.

Az 1d6t6l fiiggd Schrodinger-egyenlet teljes rendsze-

rea
Y —de (35)

alakban irhatd, ahol @, illetve E; a H® = E® sajatérték-
probléma (id6tdl fiiggetlen Schrédinger-egyenlet) sajat-
fiiggvénye és sajatértéke. Ha most O egy tetszbleges
operitor, akkor a fenti bazison vett matrixelemei
<q) e—(i/h)Enl|O|cD e—(i/h)E,,,l>
— O(n m)e(i/h)(E,rEm)t

— O(ﬂ m)ei(u(n,m)l
s .

(36)

A (11), (28)-(30) egyenletekbdl latjuk, hogy Heisen-
berg a Fourier-sorokbol a Kramers-szabalyok alkalma-
zasaval a fizikai mennyiségek matrixait — anélkiil, hogy
tudta volna — éppen az energia-sajatfiiggvények bazisan
irta fel, és az O(m, n) atmeneti matrixelemeket a mozgas-
egyenletek és a felcserélési relaciok segitségével kapta
meg.

Kovetkezmények

Heisenberg ,,a kvantummechanika megalkotasaért” No-
bel-dijat kapott 1932-ben. Allitélag meglepédott, hogy
egyedill kapta, nem pedig Bornnal és Jordannal meg-
osztva. Born masik tanarsegédje, Pauli is Nobel-dijat
kapott 1945-ben, ,az ugynevezett Pauli-féle kizarasi elv
felfedezéséért”. Vajon mit érezhetett Born professzor,
amikor azt tapasztalta, hogy tanarsegédjei sorra kapjak
a Nobel-dijakat? Végiil 6 is kapott egyet 1954-ben, ,a
hullamfiiggvény statisztikus értelmezéséért”. Schrodin-
ger Heisenberget kovetve és Dirackal megosztva kapta
meg a Nobel-dijat 1933-ban, ,az atomelmélet Gj, termé-
keny formajanak felfedezéséért”. Az 1969-es Oppenhei-
mer-dij atvételekor Dirac visszagondolva fiatal éveire igy
fogalmazott: ,Az ezerkilencszazhuszonottel kezd6dé
néhany évet a fizika aranykoranak lehet nevezni. Ebben
az id6ben alapvetd elgondolasaink igen gyorsan fejléd-
tek, és mindenki szamara volt béven tennival6. Ma mar
vilagosan latjuk az ezen aranykor folyaman kimunkalt
gondolatok korlatait is. Mindannyian azt reméljiik, hogy
bekoszont majd egy Uj aranykor, amelyet valami igen
nagy hatdsd gondolat fog elinditani, s mely majd 4jbol a
felgyorsult fejlédés korszaka lesz, nagy reményekkel és
félelmekkel.” [26]
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KVANTUMELMELET ES KAUZALITAS

HUN-REN Bolcsészettudomanyi Kutatokdzpont, Filozéfiai Intézet, Budapest

A Bell-egyenlitlenségek kiztudottan kizdrjik az EPR-kor-
reldciok lokdlis, konspirdciomentes, kozdsok-tipusi ma-
gyardzatdt. De vajon létezik a kiozds okoknak olyan
kvantumos dltaldnositdsa, amely lehetévé tesz egy ilyen
magyardzatot?

1. Bevezetés

Ha egy varosba vezet6 autéutak forgalmat tanulmanyoz-
zuk, sokféle korrelacidra lehetiink figyelmesek. Regge-

Szabo Gabor a HUN-REN Bolcsészettudoma-
nyi Kutatokozpont Filozofiai Intézetének tudo-
manyos tandcsaddja. Kutatasi teriilete a modern
fizika filozéfiai kérdései, valamint a valdszinG-
ség és a kauzalitds metafizikéja.
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lenként példaul az utakon megné a varosba igyekvé autok
szama, az esti 6rakban pedig a varosbodl kidramlé autoké.
Maskor az egyik uton akadozik a forgalom, a masikon
pedig megélénkiil. A sokféle korrelaci6 magyarazata
azonban mindig kétfajta oksagi mintazatba illeszkedik.
Az utakon esténként megnovekedo forgalom oka a mun-
kaid6 vége; az egyik Gton megndvekedett forgalomnak
pedig a masik ut akadoz6 forgalma, amelyrél az autésok a
radiobol értesiilhetnek. Ugy is fogalmazhatunk, hogy az
els6 esetben a korrelaciot egy tovabbi esemény, egy ko-
z0s ok magyarazza, a masodik esetben pedig a korrelal6
események kozotti kdzvetlen oksagi kapcsolat.

Hogy egy korreladcié magyardzata mikor milyen kau-
zdlis tipusba esik, arra nincsen altalanos szabaly. Némely
esetben nyilvinval6, mas esetekben pedig valészinitlen
a kozvetlen kauzalis kapcsolat a korrelalé események ko-
z06tt. Kizarni a kozvetlen oksagi viszonyt azonban csak
akkor lehetséges, ha azt valamilyen természettorvény
tiltja. Teljes altalanossdgban ilyen természettorvényt
csak egyet ismeriink: a relativitaselméletnek azt az al-
litasat, hogy minden kauzalis hatas terjedési sebessége
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kisebb a fénysebességnél. Ha tehat két korrelal6 esemény
térszerlien szeparalt, akkor a korreldci6 magyarazata
csak koz6s okok segitségével lehetséges.

A kvantumelmélet EPR-korrelaciéi pontosan ilyen
térszerlien szeparalt események kozotti korreldciok,
amelyek kizarjak a direkt tipusd kauzdlis viszonyt. Ma-
gyarazatukhoz tehat olyan kozos okokat kell keresni,
amelyek egyfeldl a korrelal6 események kozos kauzalis
multjiban fekszenek, masfeldl a korrelacié kozos okai-
nak mindsiilnek. De milyen események mindsiilnek ko-
z6s oknak?

2. A koz6s ok fogalma

A koz6s ok fogalmahoz elégséges feltételt nehéz volna
megadni, de egy nagyon fontos sziikséges feltétel a ren-
delkezésiinkre 4ll. A feltétel a tudomanyfiloz6fus Hans
Reichenbachtél szarmazik, aki a kozos ok fogalmat el-
szOr definidlta valoszinlségi fogalmak segitségével (Ho-
fer-Szabo et al., 2013). Reichenbach gondolatanak lénye-
ge, hogy a k6z6s ok, amennyiben feltételként kezeljik,
a korrelalé eseményeket ledrnyékolja egymastol, vagyis
a korrelal6é eseményeket feltételesen fliggetlenné teszi.
Legyen A és Bkét esemény, A A B a két esemény konjunk-
cidja és

P(AAB) = p(A) p(B)

a kozottiik levs korrelacié egy klasszikus valoszintiségi
térben. Az eseménytér egy {C,} particidjat - vagyis olyan
események halmazat, amelyek paronként kizarjak egy-
mast és unidjuk a teljes eseménytér — a korrelacié kozos
okanak nevezziik, amennyiben minden k-ra az alabbi fel-
tételes fliggetlenség teljestil:

P(AAB|CY = p(A|C)p(B|Cy),

ahol

AlC) i =—F
M | & Pp(Cy)

a klasszikus feltételes valoszintiséget jeloli. A fenti fel-
tételes fliggetlenség azt fejezi ki, hogy a korrelaci6 az
A és B események kozott eltlinik, amennyiben a val6-
szinlségeket a koz0s okokra kondicionaljuk. A beve-
zet6 példankra alkalmazva: ha a napot a munkaid6
szempontjabdl relevans napszakokra osztjuk fel, akkor
a kiillonb6z6 utak forgalma kozott nem lesz korrelacio.
Se reggel, se délben, se este kiilon-kiilon nem tapaszta-
lunk korrelaciot, hiszen a forgalom minden tton a nap-
szaknak megfelel6en rogzitett. Korrelacidt csak akkor
kapunk, ha a forgalmat a teljes napra 6sszegezziik.

Az 1960-as évek talan legmeglep6bb felfedezése az
volt, hogy az EPR-korrelaciék nem magyarazhaték ko-
z0s okokkal. A felfedezés, amelynek elméleti és filozofiai
jelent6ségét alig lehet tulbecsiilni, John Stewart Bellt6l
(1964/2004) szarmazott, és a hires Bell-egyenl6tlensé-
gekben oltott testet. A Bell-egyenl6tlenségek és a ko-
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z0s okok viszonya azonban némi pontositasra szorul.
El6szor is az EPR-korrelaciok kisérleti szinten maguk
is feltételes korreliciék, mivel kiilonb6z6 mérésva-
lasztasokhoz tartozé kimenetek kozotti korrelacidkat
jelentenek. Ezektd]l a mérésvalasztasoktdl Bell megko-
vetelte, hogy statisztikusan fiiggetlenek legyenek a ko-
z0s okoktol. Ez az Gn. no-conspiracy feltétel mintegy a
szabad mérésvalasztast garantalja. Masodszor Bell azt is
megkovetelte, hogy a kiillonb6z6 mérésvalasztasokhoz
tartoz6 kimenetek kozotti korrelacidkat ne mas-mas
ko6z6s okok magyarazzak, hanem ugyanazok a kozds
okok - vagyis, hogy a k6zds okok un. kozds kozos okok
legyenek. Ezek mellett a természetes elvarasok mellett
az EPR-korrelaciok kozosok-tipusi magyardzata mar
valéban kizarhato.

Az elmilt hatvan évben szamos probalkozas tortént
a k6z0s ok fogalmanak moédositasara, illetve a jarulékos
feltételek lazitasara (E. Szabd, 2002). Ezek a probalko-
zasok azonban sikertelennek bizonyultak. A Bell-egyen-
16tlenségek sériilése a kvantumelméletben azt bizonyi-
totta, hogy az EPR-korrelaciok nem illeszthetk be egy
olyan kauzalis mintazatba, amely egyben a relativitas-
elmélet kovetelményeinek is megfelel.

3. Kvantumos kozos okok

Szigoru értelemben azonban a relativisztikus lokalitds
feltétele nem fogalmazhat6 meg a Bell-egyenlé6tlenségek
szokasos keretei kozott. A Bell-egyenl6tlenségek ugyan-
is tisztan valoszintiségi allitasok, amelyek az események
téridébeli lokalizacidjat csak kozvetve, valdszinliségi
fiiggetlenségek formajaban reprezentaljak. A kozos ok
pontos lokalizacioja és a lokalitasi feltétel vizsgalata csak
egy olyan fizikai elméleten beliil lehetséges, amely egy-
szerre képes szamot adni az események valoszintiségé-
r6l és lokalizacidjarol. Ilyen elmélet a térelmélet.

Azt a kérdést, hogy az algebrai kvantumtérelmélet-
ben érvényes-e a kozds ok elve — vagyis térszeriien szepa-
ralt korrelalt eseményekhez mindig talalhat6-e k6zos ok
-, el6szor Rédei Miklds (1997) tette fel. Rédei megmu-
tatta, hogy az elv lokalisan végtelen szabadsagfoku térel-
méletben mindig érvényes, és a k6z0s ok lokalizalhato
a korreldlé események kauzalis multjanak unidjaban
(de a metszetében nem). Az is hamar kidertlt azonban,
hogy Rédei eredménye nem érvényes minden kvan-
tumtérelméletben, példdul az Ising-modellben, vagyis
a kozos ok elve érzékenyen fiigg az algebra tipusatdl
(Hofer-Szabd, Vecsernyés 2012). Felvet6dott a kérdés,
hogy vajon lehetséges-e a k6z6s ok fogalmat gy alta-
lanositani, hogy az elv érvényes legyen a kvantumtér-
elméletek szélesebb korében is. A keresés a kvantumos
k6z0s ok iranyaba mutatott. Mirdl is van sz6?

A klasszikus valészintiségelmélet mogott egy klasszi-
kus eseménytér all, ahol az események a klasszikus logi-
ka szabdlyainak engedelmeskednek. A kvantumelmélet
eseménytere azonban nem klasszikus, és igy a raépiil6
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valdszintiségelmélet sem az. A kvantumelméletben az
eseményeket egy Hilbert-tér projektoraival reprezen-
taljuk, a valoszinGiséget pedig egy allapottal (egyre nor-
malt, pozitiv linedris funkcionéllal). Legyen A és B két
eseményt reprezentalé projektor, ¢ pedig egy allapot a
Hilbert téren. A két esemény kozotti korrelaciot ekkor a

$(AB) = $(A)$(B)

egyenl6tlenség reprezentdlja. (A szokasos braketjelo-
lésben a ¢(A) valészintiség ($|A|#) volna. Mi itt még-
is az el6bbi jelolést hasznaljuk, mivel ez jobban mutatja
a klasszikus és kvantumos valdsziniiség kozotti szoros
kapcsolatot.)

A klasszikus esethez hasonléan a kvantumelmélet
eseményterének egy particidjat is olyan események al-
kotjak, amelyek paronként kizarjik egymast, és unio-
juk a teljes eseménytér. A Hilbert-téren egy ilyen par-
ticiét paronként merdleges és az egységre 6sszegz6do
projektorok reprezentalnak. Ennélfogva a kvantumos
kozds ok a Hilbert-tér egy olyan {C.} partici6ja, ahol
minden k-ra az alabbi feltételes fiiggetlenség teljesiil:

¢(Aélék) = ¢(A|Ck)¢ (Blék)’
ahol

L ¢(ékAék)
A|C) ==
P(A|CY) 5

a kvantumos feltételes valdsziniiség.

Els6 latasra a kvantumos kozos ok definicidja nem
sokban kiilonbozik a klasszikus k6zos ok definicidjatol.
Mindkét esetben a kozos ok olyan események halmaza,
amelyekre kondiciondlva a korrelacié eltlinik. A nem
klasszikus eseménytérben azonban a kozos okok nem
feltétleniil mérhetk egyszerre (kompatibilisek) a kor-
relal6 eseményekkel. Formalisan ez azt jelenti, hogy a
kozos okokat reprezentild projektorok nem feltétleniil
kommutalnak a korrelal6 eseményeket reprezentalé pro-
jektorokkal (jollehet maguk a térszer(ien szeparalt kor-
relalé események projektorai kommutalnak egymassal).
A kvantumos koz0s okokat éppen ez a nem kommuta-
tivitas teszi altalanosabbd a klasszikus k6z0s okoknal
(Hofer-Szabo, Vecsernyés 2018).

A koz6s ok kvantumos altaldnositisa két szempont-
bol is eredményesnek bizonyult. Egyrészt kideriilt, hogy
a kvantumos k6z0s okok bevezetésével a kozos ok elve
tagabb korben, példaul az Ising-modellben is érvény-
ben marad, masfeldl - igen csak meglepé médon - az is
kideriilt, hogy a Bell-egyenl6tlenségeket maximalisan
sért6 EPR-korrelaciokhoz mégis csak adhat6é kozosok-
tipusi magyarazat, raadasul olyan, amely a k6z0s okot
a korrelal6 események koz6s multjaban lokalizalja.

Ez utébbi eredmény azonban ellentmondani lat-
szott a Bell-egyenl6tlenségek szokasos értelmezésé-
nek. Hogyan lehetséges ugyanis az EPR-korrelaciok
kozosok-tipust, raadasul relativisztikus magyarazata,
ha a Bell-egyenl6tlenségek épp az ilyen magyarazatokat
zarjak ki?

SzABO GABOR: KVANTUMELMELET ES KAUZALITAS

A vialasz a nem klasszikus feltételes valoszintiségek-
nek a klasszikustol eltérd viselkedésében rejlik. A klasz-
szikus valdszintiségelméletnek ugyanis fontos tétele az
un. teljes valdsziniiség tétele, amely azt garantalja, hogy
barmely esemény valészinlisége mintegy visszaépithetd
barmely teljes kord feltételrendszerbdl. Formadlisan:

P(A) =D p(A|C) p(Cy).

A ko6z0s okokra vonatkoztatva ez azt jelenti, hogy a
korrelal6é események valdszinlisége rekonstrualhaté lesz
a koz0s okokra vett feltételes valdszintiségek silyozott
Osszegeként. Ismét csak a bevezet6ben mar emlitett
példat emlitve: barmely dton a napi forgalom nagysaga,
vagyis az autok relativ gyakorisiga, rekonstrualhaté az
egyes napszakokra vetitett forgalom sulyozott osszege-
ként.

Bar a teljes valoszinlség tétele rejtve marad a kzos
reldciok magyardzatiaban. Azt biztositja ugyanis, hogy
a jelenség egy olyan finomabb leirdsa, amely a k6zos
okokat is figyelembe veszi, kompatibilis legyen a felszi-
ni, megfigyelhet6 korrelaciokkal. A felszini korrelaciok
tehat mintegy a jelenségek durvabb leirasaként jelent-
keznek. Korreliciot akkor latunk, ha elfeledkeziink a
jelenség mélyebben fekvd okairdl.

A teljes valdszinuség tétele azonban nem érvényes
a kvantum-valészinliségelméletben. Tipikus esetben
ugyanis

#(A) =Y $A|C) $(C),

és pontosan ez teszi lehet6vé, hogy a kvantumos k6zos
okokbol ne lehessen levezetni a Bell-egyenlétlensége-
ket. A Bell-egyenlétlenségekben ugyanis éppen a teljes
valoszinliség tétele révén tudunk kovetkeztetni a hat-
térben 4ll6 k6z6s okok statisztikajabdl a felszini korre-
lacidkra. A teljes valdsziniliség tételének feladdsaval ez
a logikai lanc a k6z0s ok és a felszini korrelaciok kozott
megszakad. A kvantumos koz6s okok segitségével tehat
csak azon az dron magyarazhatjuk az EPR-korrelaci6-
kat, ha feladjuk a felszini korrelaciék rekonstrualhato-
sagat a kozos okokbdl.

Kérdés, mekkora ez az ar, amit a klasszicitas feladasa
miatt meg kell fizetniink.

4. Kritikak és nyitott kérdések

A kozos ok fogalmanak altalanositisa éppen a Bell-
egyenl6tlenségek megkeriilése miatt nem maradt kri-
tika nélkiil. Az egyik kritika éppen a fent emlitett teljes
valészinlség tételének feladdsat érintette (Lazarovici,
2014). Elfogadhat6-e egy olyan magyarazat, amely nem
képes visszaadni a magyarazni kivint események va-
l6szintiségét? Egy masik kritika a kozos okok egy bizo-
nyos alosztalyanak, a szorzatallapotoknak a trivialitasat
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hangsuilyozta (Cavalcanti, Lal, 2014). Harmadrészt, az
sem teljesen vilagos, hogy pontosan hogyan is interpre-
talhatok a kvantumos k6z6s okok. Ha a k6z6s okok nem
kompatibilisek az okozatokkal, akkor vajon realizalha-
tok-e egyszerre? A teljes valoszinlség tételének sériilé-
se nem épp azt fejezi-e ki, hogy vagy egy olyan kisérle-
ti elrendezést vilasztunk, amelyikben az eredeti ¢ (A),
@ (B) és @ (AB) valészintségeket kapjuk, de ekkor a ko-
z0s okokat nem mérhetjiikk meg; vagy pedig egy olyan
kisérleti elrendezést, amelyikben a k6z6s okokat meg-
mérve a ¢ (A|C,), ¢(E|C'k) és¢ (AB|C)) valészintségeket
kapjuk, de ezekbdl nem vezet ut a korrelalé események
eredeti valdszintiségéhez? A szituicié nagyban hasonlit
a kétréses kisérlethez, ahol szintén valasztanunk kell az
interferencia fenntartasa és a részecskék utjanak meg-
hatarozasa kozott. Ezeket a kritikdkat fontos szem eldtt
tartani, de talin nem perddnt6ek a kvantumos k6zos
okok szempontjabdol. Megmutathat6 ugyanis, hogy bar
a teljes valdsziniiség tétele valoban nem analitikus igaz-
sag a kvantum-valészinlségelméletben, bizonyos ese-
tekben a kvantumos kdzos ok alkalmas megvalasztasaval
mégis csak teljesiil (Hofer-Szabd, Szalay, 2025). A teljes
valoszinliség tételének teljesiilése tehat a learnyékolasi
tulajdonsag mellett egy tovabbi kritérium lehet a tényle-
ges kozos okok kivalasztasdhoz.

A kvantumos koz6s okok szamos tulajdonsdga még
feltérképezésére var, de egy fontos probléma kezelése
kiilonosen siirget6. Amint emlitettiik, a kvantumvald-
szinliségek a szokdsos operacionalista értelmezésben
klasszikus feltételes valdszinliségek, amelyek adott mé-
résvalasztasok mellett a kimenetek statisztikajat rogzi-
tik (E. Szabd, 2001). A kvantumos k6zds okos magya-
razat tehdt csak akkor lehet teljes, ha illeszkedik ebbe
az operacionalista értelmezési keretbe. Ennek az értel-
mezési keretnek azonban, amint azt lattuk, fontos része
a mérésvalasztisok és a kozos okok statisztikus fligget-
lenségi kovetelménye, vagyis a no-conspiracy feltétel.
Az, hogy a kvantumos k6zds okok valdban teljesitik-e

ezt a feltételt, azaz az EPR-korrelaciok konspiraciomen-
tes magyarazatat adjik-e, egyel6re nyitott kérdés.
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1. Mikroszkopikus-makroszkopikus
atmenet

A kvantummechanika szdz év alatt teljesen varatlan javas-
lategyiittesbdl a fizika egyik pillérévé valt, melyet az azota
végzett mérések kivétel nélkiil megerdsitettek. Ezzel fizikai
vilagunk két szintre, mikroszkopikus és makroszkopikus je-
lenségekre hasadt, melyek alapfeltevései teljesen kiilonbozéek.
Ugyanakkor meg vagyunk gy6zdédve arrdl, hogy vilagunk
egy és oszthatatlan. Mennyiben békithetd ki ez a két szint?
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Osszeférhetdségiiket kizarélag egy olyan fogalmi rendszer
segitségével ellendrizhetjiik, amely interpolal a kvantumos
és a klasszikus tartomany hatdran, és ezért mindkét szinten
alkalmazhato.

Hol is keressiik a kvantumos-klasszikus dtmenetet? A
kvantummechanika egyik meglep eredménye az elemi
részecskék definicidja. A dinamikat linearis terekben meg-
valésité formalizmusban természetes médon azonosithatok
a dinamikai folyamatok elemi, diszkrét lépései a szimmet-
riak irreducibilis abrazolasai segitségével. Ennek megfele-
16en a klasszikus fizikabol kiindulva megfigyeléseink csak
akkor érik el a kvantumos szintet, amikor felbontisuk ele-
gendd az egyes elemi gerjesztések kovetéséhez. Akkor azon-
ban a mérés olyan pontossaguva valik, hogy a méréeszkoz
elkeriilhetetlen kolcsonhatdsa a mért rendszerrel - elkeriil-
hetetlen, hiszen ennek alapjan beszélhetiink egyaltalan
mérésrél - befolyasolja a mérés eredményét. Ezzel pedig a
determinizmus empirikus ellenérzése lehetetlenné valt, hi-
szen definici6 szerint nem ismerjiik méréeszkoziink kezdeti
feltételét.

A kvantumos-klasszikus 4tmenet megértését célzo
és az aldbbiakban vazolt javaslat abbdl 4ll, hogy a kvantu-
mos-klasszikus dtmenet helyett a mikroszkopikus-makrosz-
kopikus atmenetre forditsuk figyelmiinket - az iskoldban
megismert zart rendszerek helyett nyitott rendszerek meg-
fogalmazasaban. Ennek megfelel6en fogalmazzuk meg ugy
a torvényeket, hogy azok tartalmazhassak a megfigyelést
elkeriild, de a megfigyelt rendszerrel kolcsonhaté dinami-
kai szabadsagfokok hatésat.

2. Nyilt rendszerek

A nyilt rendszerek leirasa két egymastol fiiggetlennek
tlin6 problémat tartalmaz. (a) A kdrnyezet altalaban sok-
kal nagyobb, Osszetettebb, mint a megfigyelt rendszer.
Hogyan taldljuk meg a rendszer szamara fontos kornye-
zeti szabadsagfokokat? (b) Hogyan illeszthetjiik be eze-
ket a megfigyelt rendszer dinamikajaba?

Mindkét fent vazolt probléma egyideji megoldasat
el6szor a klasszikus fizikdban targyaljuk, az x és y ko-
ordinatakkal leirt rendszer és kornyezet egyiittesének
zart dinamikajat leiré S[x, y] hatasbdl kiindulva [1]. A
(b) kérdés megvalaszoldsa, a nyilt rendszer mozgis-
egyenletének levezetése két 1épésbdl all. (i) Oldjuk meg
akornyezet 0S[x, y1/0y = 0 mozgasegyenletét tetszbleges
x(t) trajektoriara! (i) Az igy kapott y[x](#) trajektoriat
helyettesitjiik be a rendszer varidciés mozgasegyenle-
tébe: dS[x, y1/0x), -,y = 0. A nyilt dinamika formalis
problémaja abban nyilvanul meg, hogy ezt a nyilt moz-
gasegyenletet nem lehet a természetesnek tind S.x[x] =
S[x, y[x]] hatasbdl szarmaztatni, hiszen

555; Aq 55[9; xy[x]]' W

y=ylx]
A probléma megoldasa kézenfekvs: hasznaljunk két
koordinatit arendszer minden szabadsagfokara, x — (x, x"),

POLONY! JANOS: A KVANTUMOS ES KLASSZIKUS TARTOMANY HATARAN

2,1

i tf

1. dbra. A mozgast kétszer kovetjiik végig, egyszer oda, majd a
végpontban végrehajtott idSirany megforditdsa utan, vissza az
id6ben. A zért kolcsonhatis (fels6 szaggatott vonal) az oda vagy
a vissza meneten belill torténik, a nyitott kolcsonhatds (alsé
szaggatott vonal) a kétfajta mozgas kozott lehet jelenik meg

Seir [, x”] = S[x, y[x']], melyeket csak a mozgasegyenlet
megoldésa utan tesziink egyenlévé. Az Gj koordinatat va-
lasszuk meg gy, hogy ez a megkétszerez6dés formalis ma-
radjon, azaz mindkét koordindtira ugyanazt a trajektdriat
eredményezze a variaciés mozgasegyenlet! Ennek érdeké-
ben kétszer kovetjiik végig a mozgast. E16szor el6re halad-
va az id6ben, majd a végén megforditjuk az id6iranyt, és
visszafelé is végigkovetjiik az idStitkrozott mozgast, mig a
kezdeti id6ig visszajutunk. Ez persze felesleges megket-
t6z6dés zart dinamika esetében, de varjunk egy kicsit a
javaslat elbiralasaval!

A hatds megvalasztasa érdekében az igy kapott és az
dbran vazolt #(f) trajektoriat két részre bontva Z(f) —
(x.(®), x_(®) = (x(D), x(2t; — 1)) vezetjiik be a megkettd-
z0dést. A hagyomanyos S[x] hatassal leirt zart dinami-
ka esetén az S[x,, x_] = S[x.] — S*[x_] hatdst valasztjuk,
ahol a negativ elgjel a t — —t id6tiikrozésbdl fakad, és
a komplex konjugalas a Green-fiiggvények érdekében a
hatasban bevezetett (itt az egyszerliség miatt nem tar-
gyalt) infinitezimdlis képzetes tagok miatt sziikséges.
zon végezzik el, melyet mindkét trajektériara kirott fi-
zikai kezdeti feltétellel és a végs6 idépontban kiszabott
x,(t;) = x_(t;) lezdrassal definidlunk. Innen ered a méd-
szer zart id6palya (Closed Time Path, CTP) elnevezése.

Vegyiik észre, hogy ebben a rendszerben mindségi-
leg 4j kdlcsonhatasok vezethetSk be, ugyanis a szokasos
x, <> x; kolcsonhatas mellett a zart rendszerekben isme-
retlen x, <> x; kolcsonhatdsra is lehet6ség van. Mivel x.
kornyezetét x; képviseli, ez utdbbi a rendszer-koérnyezet
kolcsonhatasnak felel meg. gy oldédik meg a fentebb
emlitett (a) probléma: a rendszer szamara fontos kornye-
zet pont annyira 0sszetett, mint maga a rendszer. Ez jol
lathaté az

Slx,, x_] = Silx.] = Silx_] + Silx., x_]

felbontasban, ahol az egyetlen koordinatara vonatkozé
S,[x] és a koordinataparok kozti kdlcsonhatast tartalma-
26 S,[x,, x_] a zart, illetve nyitott kdlcsonhatast irja le.

A kvantummechanikdban a szabadsagfokok meg-
kett6zésének bevezetése a kovetkezé gondolatmenettel
torténik. Egy nyitott kvantumrendszer allapota tipiku-
san kevert, ezért a nyitott kvantumdinamikat a strd-
ségmatrix segitségével kell leirni. Tetszbleges fizikai A
mennyiség varhatd értékét tekintve,
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(A)=TrAp]= J.dx+dx, (x_|Alx, ) p(x.,x2),  (2)

de amennyiben a rendszer tiszta allapotban van, a sliri-
ségmitrix faktorizalodik, p(x,, x.) = (x.|w)(w|x_), igy
a fenti varhat6 értékben a (| bra és a |p) ket 4llapotok
kvantumflukticioi, (y|x_) és (x,|yp) fiiggetlenek. Azon-
ban egy kevert allapot stirliségmatrixa,

p(x,,x) =Z:n<x+ ;//n>p,,<w,, x_), n=1,2,..

nem faktorizalhatd, ezért nyilt rendszerekben a bra és a
ket komponens kvantumfluktudcidi korrelaltak.

A palyaintegrilos formalizmusban ez a szabadsag-
fokok klasszikus mechanikaban megfigyelt megkétszere-
z0déséhez vezet [2]. Az igy kialakult formalizmus mar j6
fél évszazada ismert a kvantumelméletben [3-5], csupan
altalanossdganak és jelent6ségének felismerése varatott
magara.

Az S[x,, y,, x_, y_] hatasra alapuld palyaintegralbdl
elindulva a kornyezet szabadsagfokainak integralasival
kapott S.xl[x., x_] hatds a nyilt dinamikat irja le. A kor-
nyezeti szabadsagfokok eliminalasat a renormaldsi cso-
port moédszerével lehet mddszeresen végrehajtani. Ily
moédon a klasszikus, kvantumos, zart és nyitott dinami-
kat egyarant leiré hatasfunkciondl felhasznaldsaval 1j
lehet6ség nyilik a kvantumos-klasszikus dtmenet leira-
sara.

3. A mikroszkopikus folyamatok sajatos
jellemz0i

Miel6tt f6 célunkat, a makroszkopikus hataresetet tar-
gyalnank, megemlitiink két olyan kvantumos jelenséget,
melyeknek el kell tinniiik ahhoz, hogy a klasszikus fi-
zikdhoz elérjiink.

Egyik a makroszkopikusan kiilonb6z6 kvantum-
allapotok kozott fellépd interferencia, melynek elnyo-
masat dekoherencidnak hivjik. Ez a kornyezettel vald
kolcsonhatasbol fakad, és jol megértett folyamat. Te-
kintsiink példaul egy butordarabot, melynek a legcse-
kélyebb athelyezése a szobaban 1évé levegémolekuldk
mikroszkopikus atrendez6déséhez vezet. Nem nehéz
belatni a butor és a leveg6 kozos zart dinamikajaban,
hogy mindegyik molekula allapotdnak megvaltozasa
egy egynél kisebb abszolat értékd komplex szamszor-
z6val csokkenti a buator két allapota kozti interferen-
ciat, amely ennélfogva teljesen eltlinik a termodina-
mikai hatdresetben. A dekoherencia eredményeképp a
stirliségmatrix nem diagonalis elemei nagyon kicsivé
valnak, ez azonban bazisfiiggd. A koordinatabazisban a
dekoherenciat a rendszer és a kornyezet 0sszefonédasat
jellemz6 S,[x.,, x_] tag képzetes része irja le, amely sok-
részecskés rendszerekben a kvantumtérelmélet pertur-
bacidszamitasa segitségével egyszerilien azonosithato és
szamithato.

A miasik kérdéses jelenség a kvantumos vilagot jel-
lemz6 indeterminizmus (kvantumfluktuaciék), melyek
elnyomadsa is feltétele a determinisztikus klasszikus tor-
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vények megjelenésének. A determinizmus két valtozat-
ban szokott megjelenni a koztudatban. A és B jelenség
determinisztikus logikai kapcsolatban van, A <> B, hael-
mondhato, hogy A akkor és csak akkor jelenik meg ami-
kor B. A determinizmus a filoz6fusok szamara inkabb az
ok-okozat, roviden oksag torvényeként ismeretes, sem-
mi sem torténik ok nélkiil. Ez annak felel meg, hogy ha
A megtortént akkor B is bekovetkezik, A — B. Kant 6ta
elfogadott feltételezés, hogy ez csupan gondolkodasunk
rendez8elve. A filoz6fusok altal hasznalt ok és okozat
kiilonbsége, azaz hogy az ok id6ben megel6zi az okoza-
tot, nehezen értelmezhetd a klasszikus fizikaban, amely
csupan egy mozgas, illetve folyamat két kiilonb6z6 id6-
pontban felvett allapota kozti dsszefiiggésekre szoritko-
zik. A klasszikus determinisztikus torvények szerint a
két allapot koziil az egyik sziikségképpen meghatarozza
a masikat, fiiggetleniil az id6beli sorrendtél.

A kvantummechanikdban nem valésul meg sem a
determinizmus, sem pedig az oksag elve. A determiniz-
mus hidnya a Heisenberg-féle hatarozatlansagi relaci6
alapjan érthet6 meg. Két fizikai mennyiség kompatibilis,
ha az azokat leir6 operatorok kommutdlnak. A hatiro-
zatlansagi relaci6 szerint egy rendszeren két nem kom-
patibilis fizikai mennyiség egymas utan mért értéke
kozott csak valdsziniiségi, nem pedig determinisztikus
kapcsolat van. Az oksag elvének megsértése pedig leg-
konnyebben az Gn. EPR-paradoxon [7] példajan keresz-
tlil érthet6 meg. Tekintsiink két mikroszkopikus rend-
szert, melyek egy pillanatban kolcsonhatnak, és ennek
folyaman allapotuk dsszefonddik! A kvantummechani-
ka szerint a két rendszeren egyidejlileg elvégzett méré-
sek eredménye korrelalt az in. Bell-egyenl6tlenségek
sériilése miatt, fiiggetleniil a két rendszer tavolsagatol.
A jelenség kisérleti ellenérzésére szamos technikai
probléma megoldéasa utdn csak 48 évvel kés6bb keriilt
sor, melyet szdmos tovabbi mérés kovetett az elképzel-
het6 hibaforrasok kikiiszobolésével.

Ezek szerint az egyik mérés altal kapott informacié
a fénysebességnél gyorsabban moédositja a masik rend-
szert. A specialis relativitiselmélet szerint a térszerien
szeparalt mérések id6beli sorrendje fiigg attdl, hogy
milyen sebességgel mozog a sorrendet felallitdé megfi-
gyeld, azaz tetszOleges. Tehat a két mérés eredménye
kozt nem allhat fenn oksagi kapcsolat — Kant feltevését
megerdsitve - helyette egy régebben megtortént és a
megfigyelést elkeriil6 kolcsonhatast kell feltételezniink.
Errél lasd még a Fizikai Szemle jelen szamaban Szabé
Gébor cikkét a ,kvantumos kéz6s ok” hipotézisérdl.
Klasszikus fizikai mérések esetén az oksag ilyen meg-
keriilése nyilvanvaléan illuzérikus, példaul a szinkro-
nizalt 6rak korrelalt viselkedése trivialis jelenség, de
az emlitett mikroszkopikus kisérlet esetében biztosak
lehetiink abban, hogy csak a mérés altal, a mérés idejé-
ben kivaltott folyamatok korrelaci6jardl van sz6. A cikk
tovabbi részében azt fogjuk targyalni, hogyan megy at a
mikroszkopikus indeterminizmus makroszkopikus de-
terminizmusba.
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4. Valdszintliség-elmélet

Folytassuk most gondolatmenetiinket, mellyel az inde-
terminisztikus mikroszkopikus torvények determinisz-
tikus makroszkopikus térvényekbe torténd atalakulasat
kovetjiik! Ennek az atmenetnek megértése az indetermi-
nisztikus jelenségek matematikai leirdsan, a Kolmogorov
altal megfogalmazott axiémakra alapuld valdsziniliség-
szamitason alapul.

Mit is jelent egy jelenség valoszinlisége? Objektivnek
mondhato, ha a jelenséget jellemzi, szubjektivnek pedig,
ha a jelenséget vizsgalora vonatkozik. A Bayes-tétel szo-
kasos értelmezése arra utal, hogy a valdszintiség az isme-
reteket gyijt6 gondolkodot jellemzi.

Az objektiv jelleget helyezi el6térbe a nagy szamok
torvénye: egy véletlen X jelenség egymastdl fiiggetlen
megvaldsulasait vizsgalva a relativ gyakorisag, egy adott
érték megjelenésének N, és az Osszes megfigyelés N,
hanyadosa, p.q = N./N,, a jelenség p(X) valészinlségéhez
tart az N, — oo hatdratmenetben. Sajnilatos médon ez
a valoszintliségnek egy korkoros definiciéjahoz vezet, és
csupan azt biztositja, hogy a relativ gyakorisag és a val6-
szinliség eltérésének a valoszinlsége, p(p.a — p(X)) kell6-
en nagy N,-re tetsz6legesen kicsi.

A valészinliség eredetének kérdésében Kolmogorov
axiomai sem segitenek, ezek csupan a legegyszeriibb,
azaz elemi események valdsziniisége ismeretében szab-
jak meg az Osszetettebb események valdszinlségét. Az
elemi események valoszinlisége eredetének kérdése pe-
dig talmutat a matematikan, és a jelenségek részletesebb
ismeretét, fizikai megkozelitést igényel. Jaynes értelme-
zése szerint a valoszinliségszamitas a logika kiterjesztése
[8]. Fontos megjegyezni, hogy ugyan a klasszikus fizika
valoszintségei kielégitik Kolmogorov axidémait, kvan-
tumfolyamatok esetén ez csak teljes dekoherencia esetén
torténik meg.

A determinisztikus klasszikus fizikdban nincs helye
objektiv bizonytalansignak. Tehat itt a valoszinlség
szubjektiv, a megfigyelés véges felbontasabdl vagy pe-
dig a megfigyel6 véges informaciofeldolgozasi képes-
ségébol fakad. Ez persze nem azt jelenti, hogy barki
barmit allithat; azonos részleges informaciéval ren-
delkez6 gondolkoddknak azonos kovetkeztetésre kell
jutniuk.

A val6szinliség a kvantummechanikdban objek-
tiv. médon, konstruktiv definiciéval jelenik meg a
Born-szabaly révén, amely egy mérés lehetséges ered-
ményeinek el6fordulasi valdszinliségét szabja meg.
Ez a valdszinliség nem a megfigyelés hianyossagaiboél
ered, és ennélfogva objektiv annak ellenére, hogy em-
pirikus ellenérzése a nagy szamok torvényén alapul.
Ennek belatasara elegend6 elképzelni két kolcsonha-
t6 részecske tiszta dllapotat melyben a két komponens
Osszefonodik. A kvantumallapot informaciénk osszeg-
zéseként foghato fel, tehat a tiszta allapot tartalmazza
az adott rendszerr6l megszerezhet6 maximalis infor-
maciét. Azonban ennek a birtokdban sem tudunk sem-

mit egyetlen részecske allapotarél amennyiben az 6sz-
szefonddott egy masikkal. Mas sz6val a mérés folyaman,
amikor a mért rendszer és a méréeszkoz kolcsonhat és
osszefonodik, informaciét nyeriink és vesztiink, nem
tudjuk kinyerni a teljes informaciét a mért rendszert
alkoté részecskékrdl. Ezen a ponton kapcsolddik 6ssze
az informacidelmélet és a kvantummechanika, melynek
szabalyai a részleges informacié optimadlis és modsze-
res alkalmazasanak tlinnek. Tehat a klasszikus fizikat a
kvantummechanikdbdl szarmaztatva elkeriilhetetlen-
nek tlinik az indeterminizmus.

5. A kozponti hatareloszlas-tétel és a
méréselmélet

Hogy lehet elképzelni a determinisztikus torvények
megjelenését az el6z6 fejezet végkovetkeztetése fényé-
ben? Keressiik a valaszt a valdszinliségszamitas kozponti
hatdreloszlas-tétele segitségével, mely olyan numerikus
értékil & valoszinlségi valtozora alkalmazhato, melynek
mind a € varhat6 értéke, mind pedig az attdl valo eltérés
négyzetének a varhato értéke, o =(&— &), véges. A té-
tel szerint N fliggetlen megvaldsulas dtlaganak eloszlasa
olyan normalis eloszlashoz tart, melynek varhaté értéke &,
és az attdl valo eltérés négyzetének varhato értéke o*/N.
Tehit az atlag fluktuicidja az eredeti széras 1/4/N-szere-
se, ez pedig kell6en nagy N-re tetsz6legesen kicsi lehet.

Ez a tétel az egyensulyi statisztikus fizika megalapo-
zasaban dont6 fontossdgu, mert segitségével valnak ért-
het6vé a termodinamikai hatiresetben a véletlenszert
fluktuacidkbol kiemelkedd determinisztikus torvények,
melyeket a termodinamika intuitiv moédszerével is fel
lehet térképezni. A tétel alkalmazasa lokdlis fizikai meny-
nyiségekre azért korlatozott, mert ezek a mennyiségek
altaldban nem fiiggetlenek. Ezt a feltételt keriili meg a
renormalasi csoport moédszere, mely felfoghat6 a koz-
ponti hatdreloszlas tételének olyan altalanositasaként,
ahol a valésziniliségi valtoz6 megvaldsulasai kozott meg-
engedett a korrelacio.

Mint emlitettiilk, a megfigyelt kvantumjelenségek
annal a tavolsagskalanal olvadnak be a klasszikus fizi-
kéba, ahol a mérdeszkoz felbontisa tul durvava valik az
egyes elemi gerjesztések kovetésére. Alkalmazhat6-e
a kozponti hatireloszlis-tétel a makroszkopikus mé-
réeszkdz szamdara kovethetetlen, nagyszamu kvantu-
mos fluktuaciokra is? A valasz nem nyilvanvald, mert a
fluktuacidkat komplex valészinlségi amplitidé irja le
egy adott bazisban, azonban a val6szinliség, melyre a
tétel vonatkozik, dltalaban amplitidok 6sszegének ab-
szolutérték-négyzete, melybdl raadasul a dekoherencia
elnyomhatja az interferenciatagokat. A tétel érvény-
ben maradisa nemcsak a determinizmus megjelenése
szempontjabdl érdekes, a statisztikus fizika sokasagra
alapul¢ leirdsanak jobb megértéséhez is elvezethet izo-
lalt kvantumrendszerek esetében [9]. A kdzponti hatar-
eloszlas tételének bizonyitasa par sor a generalofiiggvény
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hasznalataval. Hasonld fiiggvény a CTP formalizmusban
is bevezethetd, és szintén egyszeri mdodon vezet a tétel
allitasdhoz [10], illetve annak korrelalt dltaldnositisihoz,
a renomaldsi csoport gondolatmenetét kovetve.

Tegyiik fel, hogy mérésiink eredménye szamos sza-
badsagfok atlaganak tekinthetd. Példaul egy ampermérd
mutatdjanak szoge a mérdeszkoz aramkorében mozgd
toltott részecskék atlagos mozgasanak eredményekép-
pen alakul ki. Tekintsiik a mutat6 szogét a megfigyelt
rendszernek, melynek kornyezete tartalmazza ezeket
a toltéseket. A mért mennyiség klasszikus viselkedésé-
nek két elégséges feltétele van, mindkett6 a kdrnyezetre
vonatkozik. (i) A kornyezetnek elég nagynak kell lenni
ahhoz, hogy konnyen gerjeszthet6vé valjon. Erre azért
van sziikség, hogy az igy bedlld erés dekoherencia 0sz-
szhangba hozza a kvantummechanika altal adott valé-
szinliséget Kolmogorov axidmdival. A dekoherencia,
a slirGségmatrix nem diagonalis elemeinek elnyomasa
informaciéveszteséget jelent. Ez az irreverzibilis 1épés
kiséri a mikroszkopikus jelenségek megjelenését a mak-
roszkopikus szinten. (ii) Kell6en sok kozelit6leg fiigget-
len kornyezeti szabadsigfokra legyen a rendszer-kor-
nyezet kolcsonhatas dtlagolva ahhoz, hogy a mérés
eredményének fluktacidja elhanyagolhatéva valjon. Ez
a feltétel sériil makroszkopikus kvantumjelenségeknél,
mint példaul a termodinamika Gibbs-paradoxonjanak
elkeriilésénél, a Bose-Einstein-kondenzaciénal, a szu-
perfolyékonysagnal vagy a kvantumos Hall-effektusnal.
Ezekben az esetekben a kdlcsonhaté kornyezeti szabad-
sagfokok nagy szdma ellenére a szabadsigfokok erds
korrelacidja, a térbeli lokalitds sériilése lehet6vé teszi
egyes kvantumjelenségek makroszkopikus nagyitasat.

Tehat a klasszikus vildg sem determinisztikus, csu-
pan az Avogadro-szam elképeszt6 nagysaga a makrosz-
kopikus jelenségekben is sziikségképpen jelenlévé in-
determinisztikus kvantumfluktudciokat gyakorlatilag
felismerhetetlenné, jo kozelitéssel elhanyagolhatéva
teszi. A determinisztikus klasszikus fizika a termodi-
namikdhoz hasonléan a makroszkopikus hatiresetben
valosul meg. Ezen a ponton valnak el visszafordithatat-
lanul a gyerekkorunkban kialakitott, klasszikus fizikara
alapozott fogalmaink a fizikai valosagtol.
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MODOSUL-E A KVANTUMELMELET A MAKROVILAGBAN?

A kvantumelmélet eredetileg az atomi vilag kiilonos
torvényeit jelentette. Evtizedekig fel sem meriilt, hogy
azon tul, a makroszkopikus vilagban is alkalmazni le-
hetne, vagy tan kellene is. Schrodinger hires 1935-0s
macskaparadoxona j6 elére figyelmeztetett, furcsa hely-
zetekre vezetne, ha makroszkopikus szuperpoziciok is
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léteznének. A kvantumelmélet sorra érte el sikereit
egyre Ujabb rendszerekre, kéz a kézben haladva a kisér-
letekkel. Ezek a rendszerek kivétel nélkiil mikroszkopi-
kusak, a leirt kollektiv jelenségek is mikroszkopikus
dinamikéakon alapulnak. Az 1960-as évekre pedig meg-
érik a gondolat, hogy a kvantummechanika kozmol6-
giai méretekben is érvényes kovetkezményeit kimutas-
suk. A kvantumgravitacié ma sem rendelkezik egységes
elmélettel, és kisérleti timogatasa csupan kozvetett és
feltételes. A mikroszkopikus vilag leirasaban diadalmas
kvantumelméletet egybdl a kozmikus méretek vilagara
kivaintuk alkalmazni, kihagyva a kett6 kozotti mérete-
ket. Az 1990-es évektdl tarul fel a mezoszkopikus vilag-
nak a sajatos kvantumelmélete és kisérletei. Itt lehetne
értelmezni a mikro- és makrovildg hatarat, vizsgalni a
kvantumelmélet esetleges médosulasat.
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A kozmolégidban egy nemlinedris, tehat moédosult
kvantumelméletet hasznalunk. Lehet, hogy az dgyne-
vezett félklasszikus gravitacié' a jovoben megértendd
kvantumgravitacionak csupan egy effektiv elmélete. Le-
het, hogy fundamentalis. A dontéshez kozmoldgiai mé-
rési adataink ma még nem elegenddek. A félklasszikus
gravitacié nemrelativisztikus hataresete a nemlinearis
Schrodinger-Newton-egyenlet, ez lesz irasunk kézpont-
jaban. Ez meglep6 mddon a makroszkopia el6tt, mar
a mezoszkopidban jelentds modosulast hoz az eredeti
Schrodinger-egyenlet joslataihoz képest. Targyalhatéva
teszi a schrodingeri paradox szuperpozicidk kérdését.

Schrodinger-Newton-egyenlet

Janossy Lajos felvetette 1952-ben [1], hogy az elekt-
ron hullamfiiggvénye talan mégsem koveti a Schrodin-
ger-egyenletet az atomi skalan tdl, a hullamfiiggvénye
nem terjedhet ki makroszkopikus méretre. A Schrédin-
ger-egyenletnek médosulnia kell, méghozza nemlined-
risan, ha a hullamfiiggvény kiterjedése az atomi mére-
teket jelentésen tullépi. Javasolta, hogy az elektron ¥ (r)
hullamfiiggvényének Schrodinger-egyenletében szere-
peljen egy Y-fiiggo potencial:

Va(@=[ f(r—rDIE) &7, (1)

ahol az f fiiggvény legyen monoton novekvé. E poten-
cial hatdsara a hullimcsomag részei egymast vonzani
fogjak (6nvonzas). Ez valéban korlatozza, hogy ¥(r)
id6vel mennyire terjedhet ki. Ma mar tudjuk, hogy ilyen
korlatozas sem elektronra sem mads elemi részre nincs.
A kvantumelmélet megallithatatlanul érvényes az ato-
mi vilagban. Mindmaig, legalabbis, egyetlen mérés sem
kérddjelezte meg a linearis Schrodinger-egyenletet.
Tortént viszont a kvantumelmélet els6 fél évszazada
utan, hogy tapasztalati késztetés nélkiil is felmeriilt a
kozmoldgiai kiterjesztés. Ehhez a kvantalast a gravita-
cioéra, tehat az einsteini gorbiilt térid6re is alkalmazni
kellett volna. A kvantumgravitacié konzisztens egyen-
leteit még ma sem ismerjiik. De ne szaladjunk ennyire
elére! Még 1962-63-ban sziiletett egy félmegoldas [2]. A
félklasszikus gravitacielméletben a teret gorbit6 anyag

' A kvantumelméletben a ,klasszikus” sz6 jelentése ,nem kvantalt”, el-
téréen a relativitiselmélettdl, ahol ,nemrelativisztikus” az értelme.

DIOSI LAJOS: MODOSUL-E A KVANTUMELMELET A MAKROVILAGBAN?

kvantalt, de a téridé nem, az marad klasszikus. A térid6
klasszikus Einstein-egyenletének jobb oldala igy médo-
sul:

8nG

4
c

Gy = f;zb

(¥

¥). ()
A bal oldalon G,, tovabbra is a klasszikus téridé gorbii-
leti tenzora, a jobb oldalon viszont az univerzumban
levé kvantalt anyag T, energia—impulzus-tenzoroperé-
tordnak a ¥ kvantumallapotban vett varhatd értéke all.
G anewtoni gravitacids dllandd, és ¢ a fénysebesség. A (2)
félklasszikus Einstein-egyenletben a térid6t a kvantalt
anyag energia-impulzus-tenzoranak az atlaga gorbiti.
Ezen az egyenleten alapul az 6srobbanasboél eredeztetett
mai kozmoldgiai modelliink. Marpedig ez az egyenlet
nemlinedrissd médositja a kvantummechanikét: a kvan-
talt anyag ¥ hullimfiiggvénye nemlinearis Schrodin-
ger-egyenletet fog kovetni. Konnyebb ezt a newtoni ha-
taresetben latni.

A newtoni hataresetben a (2) félklasszikus Einstein-
egyenletnek csak a 00 komponense relevins. A kovetke-
20 kozelitéseket hasznalhatjuk, ha a ¢ fénysebességben a
vezet6 tagokra szoritkozunk:

2
Gy = _C_ZACD’ 3)

4)

Itt A a Laplace-féle differencidloperator, ® a Newton-
potencidl, ¢ a nemrelativisztikusnak feltételezett kvan-
talt anyag térbeli tomegstiriiség-operatora. Beirva a fenti
két kifejezést a (2) egyenletbe a fénysebesség kiesik, és
megkapjuk a newtoni hataresetet:

AD(r,t) =—4nG(¥(1)| 6 (r)|W(1)).

Ty = 0c.

(%)

Ezuttal csak az egytest-esetet kovetjiik. Ha m a tomeg, és
¥ (r) a hullamfiiggvény, akkor

AD(r,t)=—-4nGm|¥(r, )| . (6)
Azilyen (Poisson-) egyenletnek a megoldasa ismert:
(r.1) = j—mf(r D d'r'. ()
ami az alabbi 6nvonzd potenciélt jelenti:
Vi (r)= j |T< fdr. )

Irjuk ezt be a szabad mozgés Schrédinger—egyenletébe:

i d¥(r)
dt

Ezt nevezziik Schrodinger-Newton-egyenletnek [3].
Meglepddhetiink: a V,, potencial szerkezete azonos az
1952-ben javasolt (1) egyenletével, eztttal a monoton f
fiiggvény is egyértelmiien adott.

Lehetséges volna, hogy Janossynak igaza volt? Az
elektronra és barmely atomi skaldju testre semmiképp;

( f Akp(r)%(r)jq«r) )
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kis tomegiik miatt a V4 potencialjuk elhanyagolhato.
Mutassuk meg ezt! Ha feltessziik, hogy ¥ (r) egy ajellem-
20 szélességl sima hullimcsomag, akkor megvizsgalha-
t6, hogyan skalazodik a linedris kinetikusenergia-tag és
anemlinedris gravitacios tag egymashoz képest. Becsiil-
jik megaz Ey;, kinetikus és az E,,,, graviticiés 6nvonzasi
potencialis energia dimenziobit:

hZ
Eyo ~—» (10)
ma
2
Egrav N_Gm . (11)
a

Eszerint keskeny hullamcsomagra a kinetikus tag domi-
nal, szélesed6 hullaimcsomagra viszont figyelembe kell
venni az énvonzast is. Az a szélesség, ahol a két mecha-
nizmus 6sszemérhetd, igy becsiilhet6:
hZ

Gm*’

Ez m ~ 1072° g tomegnél (kb. tizezer elektrontomegnél)
jelent a vilagegyetem méretével megegyez6 hullamcso-
mag-szélességet. Megallapithatjuk tehat, hogy az elemi
részecskék és a belGliik alkotott mikroszkopikus rend-
szerek kinetikus energidja mindig sok nagysdgrenddel
nagyobb az oOnvonzasnal. A (2) félklasszikus gravita-
cidelmélet nem modositja a mikrovilag kvantumos tor-
vényeit. J6 is, hogy ezt kaptuk, hiszen a linearis Schro-
dinger-egyenlet nagy pontossaggal igazolt a mikrovilag
fizikajaban. A Schrodinger-Newton-egyenlet torténete
viszont nem ér itt véget.

a, ~

(12)

Mezoszkopikus tomegek

Amennyire irrelevans a mikroviligban a gravitacios
onvonzas, annyira domindnssd valik a mezoszkopia-
ban. Ha a tomeg egy femtogramm nagysagrend(, azaz
m ~ 107" g, akkor az E,,,, gravitaciés energia mar akkor
dominanssa valik az E;, energia f6lott, amennyiben a
hullamfiiggvény a szélessége eléri a femtométeres nagy-
sagrendet. Itt egy apro6 technikai problémaval is szem-
besiiliink. A femtogrammos tomeg mar nem tekinthetd
pontszerlinek a graviticiés Onvonzisban. A (6)-(8)
egyenletek pontszer( testre vonatkoztak, most viszont
figyelembe kell venniink a test sajat tomegeloszlasat a
sajat térfogatan beliil. A legegyszeriibb, ha a test egy szi-
lard homogén R sugaru gomb. Mezoszkopikus tomeg-
nél mar akkor is dominal a gravitaciés dnvonzas, ha a
hullamfiiggvény a kiterjedése még nagysagrendekkel
kisebb az R méretnél. Ebben az a << R tartomanyban a
V4 potencial (8) alakjat az alabbi effektiv potencial veszi
at:

6Gm*> Gm*
+ [
5R 2R’

Ve (r)=— (r—(B))’, (13)
ahol
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&= [r| ¥ d'r (14)

a helyoperator varhat6 értéke. A Vy konstans tagja el-
hagyhat6, igy harmonikus oszcillatort idéz6 potencialt
kaptunk, a Schrédinger-Newton-egyenletbe mar olyan
jelolésekkel irjuk be:

in ¥ _

I 1 ) A\\2
" (—%A‘P(rﬂgma)zv(r—(r)) j\P(f)- (15)

Itt

o —JGm/R® = \/(4TE/3Gp,

ezt nevezhetjiik Newton-frekvencidanak. (Ilyen frekven-
ciaval oszcilldl egy kis probatest, ha a homogén gémbbe
fart sziik atlos csatornaba helyezziik, értéke csak a gomb
p slirtiségétol fiigg.) Olyan harmonikus oszcillatort kap-
tunk, aminek a rezgési centruma a hely (&) varhat6 érté-
ke. Ez azt jelenti, hogy a stacionarius megoldéasok leol-
vashatok a harmonikus oszcillator jol ismert stacionarius
allapotaibdl. Nézziik mindjart az alapallapotot:

1/4
%(rlf){’"n—“;“j exp[—m;;’%r—f)lj. (16)

Ez egy statikus lokalizalt hullimcsomag - szoliton-,
aminek az r kozéppontja barhol lehet. Egy exp(imvr/h)
szorzoval az alland6 v sebességgel mozgd szolitonokat
leiré megoldasokat kapjuk.

A (16) szolitonok szélességnégyzete pedig

, h
ay = = .
2may  2m(4n/3)Gp

(17)

Ham =1ngésp ~ 1 g/cm?slrlséggel szamolunk, akkor
a, ~ 1 nm szélességet kapunk. Ez sokkal kisebb, mint a
test R ~ 10 um jellemz6 mérete, igy a (13) kozelités felté-
tele teljesiil.

Tehét a mikrovilagot elhagyva mar a mezoszkopikus
testek tomege is elég erés onvonzast ad, hogy létezzen
stacioner lokalizalt allapotuk. Ez méginkabb igy van,
ha tovabblépiink a makrotdmegek felé. Oriiliink ennek,
mert a makrovilagban valéban minden testnek meghata-
rozott pozicidja van. Pedig a kvantumelmélet szerint ha
lassan is, de a hullamfiiggvényiiknek szét kellene folyni-
uk, hasonléan a mikrorészecskék hullamfiiggvényéhez.?

Sajnos a Schrodinger-Newton-egyenlet nem ad ele-
gend6 magyarazatot az izolalt mezo- és makrotdmegek
ugyanis lehetnek gerjesztett szolitonok is, egyre na-
gyobb a kiterjedéssel. Ez még talan belefér a makrosz-
kopikus képiinkbe. De van, ami kevésbé, és ezek a két-
és tobbszoliton-megoldasok. Egy kétszoliton-megoldas
lehet példaul ilyen:

\Po(rlfl)“’\yo(r'fz)

(18)
2

> Ennek észlelését a makrotomegekre elkeriilhetetlen kornyezeti za-
varé hatasok - az dgynevezett dekoherencia — lehetetlenné teszik,
de mezo- vagy nanotomegek egyre tokéletesebb laboratériumi izo-
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Ez két 4ll6 szoliton szuperpozicidja, és a kettejitk kozti
[T, — T,| tdvolsdg akdr a test R méreténél is sokkal na-
gyobb lehet. Ez jo kozelitéssel stacioner allapot lenne.
Azért csak lenne, mert az 6nvonzas nemcsak a két szoli-
tonon beliil hat, hanem a két szoliton k6zott is, a klasszi-
kus gravitacios er6 egymas felé kezdi gyorsitani 6ket.
Még élesitve a paradoxont, a két szolitonnak kicsi, ellen-
tétes kezdGsebességeket is adhatunk. Ekkor az egy szem
m tomeg két tavoli része m/2 tomegekként egymas ko-
riil kering majd egy kepleri ellipszisen. El nem keriilhet6
[4], hogy Karinthyt idézziik, aki humoreszkje végén ezt
veti oda 1911-ben [5]: ,Tovabba azt dlmodtam, hogy két
macska voltam és jatszottam egymassal”.

7 .
/ \
/ \
| |

\ /
N\ /
7
.’/
-—*_--"

Schrodinger macskai és kizarasuk

Mint lattuk, a félklasszikus graviticiéban a nagy tome-

geknek létezik lokalizalt stacioner (szoliton) hullim-

figgvényiik, ami nem folyik szét. De nem tiltottak a

makroszkopikus szuperpoziciok sem. Schrodinger egy

macska él6 és holt dllapotanak szuperpozicidjival tré-

falkozott. Ez lenne a hullimfiiggvény és annak kollap-

szusa:

W(r|él6)+¥(r|holt)
V2

W (r|é16)
{‘P(r|holt)’

ahol az r vektor a macska és a pokolgép koordinatait je-
16li. A masodik sor a véletlenszeri kollapszust jeloli az
€16 vagy a holt allapotra, ami a tankonyvi kvantumel-
mélet szerint csak akkor kovetkezik be, ha a makrosz-
kopikus szuperpoziciot kiils6 eszkdzzel észleljiikk. Ez a
bonyolult elrendezés nyilvan kezelhetetlen a fizika szo-
kéasos analitikus eszkozeivel. A lényege a makroszkopi-
kus szuperpozicio, ezért minden mas koriilményt most
elhagyva a (18) allapotot hivjuk (Schrodinger-) macska-
allapotnak, ahol az m tomeg legalabb mezoszkopikusan

nagy:

Y(rImacska) =

(19)

Yo (r|t)+¥,(r|T)
2
Y, (r |F1)
{\Po(rlfz).

Y(rlmacska)=
(20)

DIOSI LAJOS: MODOSUL-E A KVANTUMELMELET A MAKROVILAGBAN?

Feltiintettiik az allapot kollapszusat is. A tankonyvi
kvantumelmélet szerint a kollapszus attdl jon létre, ha
méréssel eldontjiik, hogy a tomeg 1, vagy r, koriil van-e.
Elhissziik ezt egy kockacukorrdl? A kornyezeti zavaro,
példaul hémérsékleti hatasoktdl sosem tudnank a gya-
korlatban annyira elszigetelni, hogy a fenti makroszko-
pikus szuperpoziciéba hozzuk, de az elmélet ezt nem
zarja ki.

Szabaditsuk-e meg a elméletet a makroszkopikus
szuperpozicioktél, a paradoxonoktol, amit a Schrédin-
ger-macskdk jelentenek? Sem kisérleti tapasztalat, sem
elméleti kovetkeztetés nem kényszerit erre. De meg-
tehetjiik egy kézenfekvé lépéssel - megintcsak dvatosan
modositva a tankonyvi kvantumelméletet az atomi vilag-
nédl nagyobb tomegskalakon.

A spontan kollapszus feltevése szerint a makroszko-
pikus szuperpoziciok maguktdl is 0sszeomlanak, ugyan-
ugy, mintha egy mérés hatasara tennék. A konkrét mo-
dellt ugy kell megvalasztani, hogy a mikrovilagban a
szuperpoziciok 7 jellemzd élettartama gyakorlatilag
végtelen legyen, a mezoszkopikus vilagban - ahol kvan-
tumos tapasztalataink nem is voltak - lehet mar érzékel-
het6en véges, a makrovilagban pedig olyan rovid legyen,
hogy makroszkopikus valtozoéban ne is johessen létre
szuperpozici6 az azonnali spontan kollapszus miatt. Las-
suk a konstrukciot legalabb a (18) tipusti makroszkopikus
szuperpoziciokra! Vegyiik észre, hogy a gravitacidés 6n-
vonzas potencialis energiaja a kezdeti szuperpoziciéban
nagyobb (jelolése EF), mint a kollapszus utani lokalizalt
allapotok barmelyikében (jelolése Ef). Legyen a AES =
Ef — Ef energianyereség az, ami a spontan kollapszust
»hajtja”. A szuperpozicid dtlagos élettartamat ezért igy
definidljuk:

h
AES

Top = (21)
Ezt a posztulitumot tiz év kiilonbséggel egymastdl
fiiggetleniil javasolta a jelen szerz6 [4, 6] és Roger Pen-
rose [7], fiiggetlennek latsz6 de rokonithaté indoklassal
[8]. Nézziik, mekkora lesz a (18) szuperpozici6 élet-
tartama! Kezdjiik a kollapszus utani allapot gravitacios
energidjaval! A ¥ (t|r,) (vagy ¥,(r|r,)) szoliton allapot-
ban az R sugard homogén gdmb 6nvonzasi potencialis
energidja Ef = 6Gm?*/5R. A kétszoliton-szuperpozi-
ciéban pedig E¢ = 2-6G(m/2)*/5R. Tehat a kollapszus
energianyeresége AES = 3Gm?/5R. A kollapszus 4tlago-
san

SAR

_— 22
3Gm? (22)

Tpp =
id6 alatt bekovetkezik. Ez példaul m = 1 mg esetén a mil-
liszekundumos skalan lesz. Az 1 gramm kockacukorra
pedig femtoszekundumos skalat kapunk, a szuperpozi-
ci6 Osszeomlik, mielStt létrejonne. Schrodinger macs-
kaja sem tud kettévalni él6re és holtra, két fél macska
sem fog Kepler-palyan keringeni egymas koriil a spon-
tan kollapszus DP-modelljében [6, 7].
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Zar6 gondolatok

Vonz6 lenne, és nincs is kizarva, hogy a kvarkoktdl a ga-
laxisokig univerzalis fizikai elmélet a kvantumelmélet,
és a régi klasszikus (nem kvantalt) torvények leszarmaz-
tathatok bel6le megfelel6 hatiresetekben. A feltételes
fogalmazas nem véletlen. A kvantumelmélet nagyszeri
egyenleteket szarmaztat a mikrovilag jelenségeire, és
ami a f6, a mikrovilag valéban ezeket az egyenleteket
latszik kovetni. Nem ugy a kozmolégiaban, ahol elmélet
és kisérlet nem jarhatott kéz a kézben. Egyfeldl a gravi-
tacid, tehat a téridd einsteini 4ltaldnos relativitiselmé-
letének kvantalt egyenleteit, a kvantumgravitaciét maig
nem sikeriilt megalkotni. Masfel6l nem ismeriink olyan
jelenségeket, amelyek egyértelmtien a gravitaci6é (tér-
id6szerkezet) kvantumossagaval kapcsolatosak. Ezért a
kvantumgravitacié elméletéhez nincsenek egyértelmi
kisérleti kapaszkodoink.

Ebben a helyzetben felvethetd, hogy a kvantum-
elmélet mddosul, ha a mikrovilagbdl elindulunk a mak-
rovilag felé. Nincs erre sem elméleti kényszer, sem
kisérleti bizonyiték, pusztin egy jelzés, hogy a makro-
kozmosz és a kvantilds viszonya még nyitott, ismeret-
len. Nem véletlen, hogy az itt felvillantott Schrodinger-
Newton-egyenlet és a spontan kollapszus DP-modellje
a tankonyvi kvantumelméletet graviticiés megfonto-
lasokkal moédositjak. Torténeti érdekesség, hogy ezek
a modositasok a mezoszkopikus tomegek vilagaban
josolnak 4j effektusokat, mikozben a graviticiot és a
kvantalast kordbban csak az extrém nagyenergias ré-
szecskefizika és az extrém gorbiilt térid6k terrénumain
kapcsoltuk 6ssze. Ime lehetséges, hogy ez a kapcsolat a
mezoszkopikus vilagban tartogat tanulnivalét. Abban a

vilagban, ahol évtizedekig sem a kvantumos, sem a gra-
vitaciés viselkedés fundamentumait nem vizsgaltuk.
Végiil az 1990-es években jott el ennek az ideje. A mezo-
tomegek kvantumos viselkedésének laboratériumi ku-
tatdsat nem utolsésorban a Schrédinger-egyenlet new-
toni gravitaciés moédositasai inspiraltak, és teszik ezt
mdig [9]. Geszti irta 2008-ban: ,lessiik a kisérleteket a
senkifoldje-tomegek vilagabol, addig is gyartjuk az el-
méleteket” [10]. Igy lesz még j6 ideig.
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A VILAGEGYETEM KVANTUMGEOMETRIAJA
A GRAVITACIO RACSTERELMELETEVEL

A kauzdlis dinamikus hdromszogelés (CDT) mddszerével
egy egész kvantumuniverzumot lehet létrehozni a szdmi-
togépiinkon, melynek formdja és viselkedése megegyezik a
vildgegyetemrél alkotott képiinkkel. Monte Carlo-szimu-
lacidk segitségével vizsgdlhatd a kiilonbozd kvantumterek
tériddre gyakorolt hatdsa és a kozmosz fluktudlo kvan-
tumgeometridja is.

1. Lord Kelvintdl a kvantumgravitacidig

»A dinamikai elmélet szépségét és tisztasagit, amely
szerint a h6 és a fény a mozgas egy-egy formédja, jelenleg

236

Németh Daniel'?

'Radboud University, High Energy Physics, Nijmegen, Hollandia
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két felh6 arnyékolja be. Az els6 azzal az elmélettel egyiitt
meriilt fel, amely a fényt hullimmozgasként irja le, és
amelyet Fresnel és Thomas Young vizsgalt. Ez a kérdés
igy sz6lt: hogyan mozoghat a Fold egy rugalmas szilard
kozegen, amely lényegében a fényatereszt éter? A ma-
sodik a Maxwell-Boltzmann-féle energiaeloszldsi elv.” -
Lord Kelvin

A felh6k” arnyékaira adott megoldasok jelentésen
megvaltoztattak a vilagrol alkotott képiinket. Kideriilt,
hogy az éter nem létezik, helyette viszont a tér és az id6
egy egységet alkot, melyet minden energiaval rendelke-
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20 test képes meggorbiteni. Ennek a matematikai meg-
fogalmazasa vezetett a legnagyobb testek fizikdjahoz,
az dltaldnos relativitdselmélethez. Nagy skalan az egész
vilagegyetem tagulni latszik, és a lathatd anyag csak egy
apro szelete a teljes egésznek, melyet nagyrészt a sotét
anyag és energia tesz ki. A masodik probléma megolda-
sa pedig elvezetett minket a legkisebb részecskék vila-
gaba, ahol a fizika fundamentalisan mérhetetlenné vilt,
hisz mar nem lehet azt kérdezni, hogy milyen gyors és
hol van, mert csak az egyikre kaphatunk pontos valaszt.
Egyesek azt mondjak, hogy a kvantummechanikdt, mely
alatt a legkisebb testek fizikajat értjiik, megérteni nem,
csak megszokni lehet.

1.1. A kvantumgravitacio szerepe

Az iltalanos relativitaselmélet és a kvantummechanika
0tvozésébdl kapjuk meg a kvantumgravitdcict. Az el-
mult évtizedek soran tobb rendkiviil érzékeny miszert
sikeriilt épiteniink, melyek a legkisebb és legnagyobb
tavolsagokat, energidkat pasztazzak, és tobb olyan fizi-
kai jelenség is létezik, amelyekre a kvantumgraviticié
elmélete talan valaszt adhat. Mi torténik a gravitacios
hatasokkal, mikozben az elektron a kétrés-kisérletben
egyszerre megy at a két résen? Milyen médon formal-
ta az Univerzum anyageloszlasit a kvantumgraviticié
az elsé pillanatokban? Egyaltaldn, mi az az Univerzum,
volt-e eleje, vagy van-e még belSle tobb, mas fizikai tor-
vényekkel? Elvész-e a fekete lyukakban az informacié
vagy sem? Lehetséges, hogy a sotét anyag és energia csak
kvantumgravitacios hatas? Ezen kérdésekre a gravitacié
kvantumelméletének tudnia kell valaszolni.

Tobb elmélet megjelent az elmult évtizedekben,
amelyek valaszt igértek a felmeriilt kérdésekre. A leg-
inkabb ismert ezek koziil a hurelmélet (string theory),
melynek ugyan sok matematikai attorést koszonhe-
tlink, viszont nem képes leirni egy olyan vilagot, amely
hasonlit a miénkre. Az ismertebbek kozo6tt van még a
hurok-kvantumgravitdcio (loop quantum gravity), mely
bonyolult kvantumtérelméleti moédszerekkel irja le a
gravitdciét mint kvantumos mez6t, és képes bizonyos
mennyiségeket kiszamitani, allitdsokat tenni annak
természetérdl. Egyik ilyen el6rejelzése példaul a fény
sebességének frekvenciatdl valo fiiggése, amelynek vi-
szont a nagyenergids asztrofizikai mérések ellentmon-
danak. Jelenleg nincs altalanosan elfogadott elmélete a
kvantumgravitaciénak.

Németh Ddniel BSc- és MSc-diplomajat az
Eotvos Lorand Tudoményegyetemen sze-
rezte Budapesten. PhD-fokozatét a Jagiello-
nian Universityn (Jagell6 Egyetem) szerezte
Krakkéban a kauzilis dinamikus hérom-
szogelés témdjaban. FG kutatdsi teriilete a
kvantumgravitacio. A cikk irdsanak idépont-
jaban a Radboud University posztdoktori
kutatdja.
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2. A kvantumgeometria megjelenése

A XX. szazad kozepére a szamitastechnikai eszk6zok
fejlédése attorést hozott szamos fizikai és matematikai
teriileten, és ebbdl a kvantumgravitacié sem maradt ki.
Az elmult évtizedekben tobb 4j elmélet is sziiletett, ame-
lyeket kifejezetten nagyméretli szamitogépes szimuldci-
06k és algoritmusok tettek lehet6vé. Ezek kozé tartozik a
jelen munka targyat képezd6 kauzdlis dinamikus hdrom-
szogelés (CDT) is [1].

2.1. Mit értiink haromszogelés alatt?

A CDT matematikai alapjat a Regge-kalkulus adja, ame-
lyet Tullio Regge dolgozott ki [2]. Regge djragondolta
az dltaldnos relativitdaselméletet: a metrikus tenzor (g,,)
helyett szabalyos haromszogekbdl felépitett diszkrét so-
kasaggal kozelitette a gorbiilt téridot.

A haromszog n dimenzids altalanositasat szimplex-
nek nevezziik: ez két dimenzidban hdromszog, harom
dimenziéban tetraéder, négy dimenziéban pedig pen-
tachoron. Az ilyen szimplexek Osszeillesztésével koze-
lithetSk a folytonos gorbiilt terek. A Regge-kalkulusban
a lapos, gorbiilet nélkiili egyenl6 élhosszt szimplexek
kicsi, sima tériddszeleteket képviselnek, igy alakulhat
ki gorbiilet. A Regge-kalkulus matematikai modszerét
felhasznalva a folytonos integralas diszkrét 6sszegzéssel
helyettesithetd, igy példaul egy adott sokasag térfogata
nem az &sszes ponton valé integraldssal érhet6 el, hanem
az n dimenzids szimplexek Osszeszamolasival, amelyek
lefedik a teret. A gorbiilet, amely az dltalanos relativitas-
elméletben a metrikus tenzor bonyolult fiiggvénye, itt
a szimplexek kapcsolddasi struktirajabol kovetkezik.
Mivel minden épitéelem sima, lapos és egyenl6 oldalg,
a gorbiilet kizardlag az épitéelemek szamossagabol és
illeszkedésébdl fakad.

1. dbra. Haromszogelt és f6lidzott téridd, amely lehet6vé teszi gorbiilt
feliiletek id6fejlédésének kozelitését
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A térid6 szerkezetének diszkrét leirasiban fontos
szerepet jatszik a fdlidzds, azaz a térid6 haromdimen-
zi6s térszerd szeletekre és egy idGiranyra torténd bon-
tasa (ennek reprezenticidja lathatd az 1. dbrdnm). Ez
a megkodzelités az Arnowitt—-Deser-Misner- (ADM)
formalizmusbdl ered [3], amely jol illeszthet6 a CDT
logikéjaba is.

2.2. Miért kauzalis a CDT?

A specialis relativitaselmélet o6ta téridénket Lorentz-
metrikdval irjuk le, ahol az id6 és tér kiillonboz6 eléjel-
lel jarul hozza a tavolsagfogalomhoz. Ezzel szemben az
euklideszi térben minden koordinata térszer(, a tavol-
sagokhoz pozitiv jarulékot ad. A kett6 kozotti atjarast
az ugynevezett Wick-forgatds biztositja, amely soran az
id6koordinatat a képzetes egységgel megszorozzuk, igy
az is térszerlvé valik. Ez a mddszer lehet&vé teszi, hogy
a bonyolult szamitasokat statisztikai fizikai eszkozokkel
egyszerilibben kezeljiink.

A CDT egyik kulcseleme a kauzalitds beépitése. A f6-
liazassal és a Regge-kalkulussal diszkrét térid6t tudunk
felépiteni, amely kauzalisan haromszogelhetd: a térid6-
szeletek (id6szer sorrendben egymas utin kovetkez6
haromdimenziés terek) kozott meghatarozott kauzalis
kapcsolatok dllnak fenn, melyet jol reprezental az 1. dbra
is. A térszer( kapcsolatot térszer(, a kauzalis kapcsolatot
pedig idGszeri élekkel reprezentalhatjuk. Ekkor a CDT
négydimenziés épitGelemei olyan pentachoronok
(2. dbra), amelyek cstcsai két szomszédos idSréteghez
tartoznak. Minden pentachoronnak 6t csiicsa van, ame-
lyek kiilonb6z6 felosztasban helyezkedhetnek el az id6-
szeletek kozott. Ez azt jelenti példaul, hogy a {4, 1} tipusa
pentachoron négy cstcsa az alsé (%), egy csucsa pedig a
fels6 (t,) idéréteghez tartozik; az {1, 4} tipus ennek tiik-
rozése az idében. Mivel hiromdimenzids térfogatot a tet-
raéderek fognak kozre, a fizikai térfogat egy adott id6-
szeleten a térszerd tetraéderek szamaval (illetve a {4, 1}
pentachoronok szamaval) lesz egyenld.

(3,2) simplex

(4,1 ),_simplex

(%, 3Dfélia(tl) An. 7Y

3D-félia (t0)

2. dbra. A kauzilis haromszogelés négydimenzios épitéelemei: {4,1}
(balra) és {3, 2} (jobbra) tipust pentachoronok. Ezek id6beli tiikrozé-
sével megkaphatok az {1, 4} és {2, 3} tipusok

A gorbiiletet a 0 deficitszog segitségével definialjuk,
amelyet a szimplexek illesztési pontjai (2D-ben csi-
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csok, 3D-ben élek, 4D-ben hdromszogek) koriil sza-
molhatunk ki:

5:2n_stimplex'9’ (l)

ahol 6 a szimplexek adott él koriili bels6 szoge (két di-
menziéban példaul 6 = n/3). Igy ha két dimenziéban
Nimpiex = 6, akkor 0 = 0, ami sik feliiletnek felel meg.
Euklideszi térben ettdl eltéré szamu haromszog illesz-
tésekor a szogdeficit eltér a nullatél, ami nem trivialis
gorbiiletet jelez.

A haromszogelés alacsony dimenziékban kombinato-
rikai modszerekkel is kezelhetd, de négy térid6-dimen-
zi6 esetén jellemz8en szamitégépes szimuldcidkra van
sziikség.

2.3. Na, de hol itt a kvantum?

A kvantumtérelmélet egyik forradalmi megkdzelitése
Richard Feynman nevéhez fiiz6dik, aki bevezette a pd-
lyaintegral médszerét. Feynman szerint egy ®(x) kvan-
tumtér fejlédése ugy irhat6 le a legjobban, ha figyelembe
vessziik az Osszes lehetséges fejldés (térid6beli allapot)
Boltzman-faktorral stlyozott Osszegét, ahol a silyt a
leirand6 rendszer klasszikus hatdsinak exponencializa-
lasaval kapjuk meg. A pélyaintegralt klasszikusan Z-vel
jeloljiik, és gravitacié esetén a kvantumtér a metrikus
tenzor g(x), melynek felirhat6 a palyaintegralja

z :JD [g]e*SEn[g], (2)

ahol D[g]a mértékintegral jele az 6sszes lehetséges g met-
rikanak a figyelembe vételével és az Sgy; Einstein-Hilbert
hatdssal mint Boltzmann faktorral silyozva:

S = % [d*xJg(R-21), 3)

ahol I' a Newton-féle gravitaciés allando, R a Ricci-
skalar és A a kozmoldgiai 4allandé. Eszerint a térid6
kvantumtérelméleti leirasat gy kapjuk meg, ha figye-
lembe vessziik a téridé Osszes lehetséges gemoetriai
realizaciojat.

Annak ellenére, hogy az S hatasingegral klasszikus
mennyiség, a palyaintegrallal val6 szamolas kvantumos-
sa valtoztatja a szamitasokat. Ezen feliil a palyaintegral
segitségével konnyedén elérhetévé valnak dinamikus
rendszerek mozgasegyenletei is, mely altal megkaphato
egy adott modell dinamikai leirdsa. A gravitici6 Reg-
ge-haromszogeléssel diszkretizalt palyaintegralja a ko-
vetkez6:

1 _c
2o 4)
T T

ahol a folytonos mértékintegral (D[g]) helyére kiilon-
b6z6 haromszogelésekre valé Cr-vel silyozott 6sszegzés
keriil, mely a 7 haromszogelések szimmetriacsoportja-
nak méretével azonosithatd. A diszkretizalt haromszo-
gelt hatast altaldnosan Sgeg.-nek, mig a CDT hatdsat
Scor-nek jeloljik.
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Egy adott N, darab csticspontbdl és N,; + N;, darab
szimplexbdl all6 haromszogelés esetén Scpr a CDT-hatés
a kovetkez6képpen irhato fel:

Seor =—(# +6A)N + K,(Ny+ Ny )+ ANy (5)

Itt x, a nem renormalizalt (vagy ,csupasz”) newtoni csa-
tolasi allandd, x, a csupasz kozmoldgiai dlland6, mig A
az aszimmetriaparaméter, amely a tér- és idészerd élek
hosszanak aranyat méri. A A = 0 eset az id6- és térira-
nyok szimmetrikus kezelését jelentené.

A CDT modellje két dimenzidéban analitikusan is ke-
zelhet6, magasabb térid6-dimenzidkban azonban csak
szamitogépes szimulacidk segitségével nyerhet6k konk-
rét eredmények.

2.4. Miért dinamikus a CDT?

A Monte Carlo-szimulaciok alapjait a mult szazad koze-
pén dolgoztak ki a Rosenbluth és Teller hazasparok Ni-
cholas Metropolis vezetésével. Ezek célja, hogy egy fizikai
rendszer egyensulyi allapotat vizsgaljak, és statisztikai
mintavétellel informaciét nyerjenek annak viselkedésé-
r6l. A médszer lényege, hogy a rendszert sorozatos 1épé-
sekkel kissé megvaltoztatva 4j konfiguracidkhoz jutunk,
amelyek egy adott eloszlas (jelen esetben az exp{-Scpr}
Boltzmann-suly) szerint érvényesiilnek.

A CDT esetében a dinamika azt jelenti, hogy a ha-
romszogelés maga, azaz a térid6 diszkrét szerkezete val-
tozik az iterdciok soran. A lépések a haromszogelés loka-
lis médositasait jelentik, errdl példat a 3. dbra szemléltet
harom dimenziéban.

3. dbra. Monte Carlo-1épések folidzassal hirom dimenzidban. Piros
potty jeloli a tetraéderek ¢ + 1, kék a t — 1 és fekete a ¢ sikon 1év6
pontjait

A CDT esetén az allapot egy adott szamu szimplex
egy adott szomszédsagi relacidval, és egy lépés ezt meg-
valtoztatja, mely lehet egy atl6 behtzasa vagy egy vertex
hozzaadasa vagy elvétele a rendszerbdl. A cél az, hogy

a hatds mint Boltzmann-suly segitségével a geometriai
lépéseket ismételgetve az allapotosszeg lehetséges geo-
metridirdl gytjtsiink elegend6en nagy statisztikat. Ha ez
megvan, akkor ezzel kiilonb6z6 megfigyelhet6 mennyi-
ségek, mint példaul az id6szeletek térfogatit vagy egy-
illetve kétpont-korrelaciés mennyiségek varhatd értékét
lehet szamolni.

3. A CDT eredményei

A kvantumtérelméletek diszkrét téridén valé numeri-
kus vizsgalatat Kenneth G. Wilson vezette be 1974-ben
[4], megalapozva a rdcstérelméletet, amely kiilonosen az
erGs kolcsonhatas, azaz a kvantum-szindinamika (QCD)
esetében valt sikeressé. Az ilyen szdmitasok jellemz&en
hatalmas szamitégépes rendszereket igényelnek, és ered-
ményeik kisérleti ellenérzése csak nagyenergids labo-
ratériumokban, példaul a CERN-ben lehetséges (ilyen
eredmény a proton és neutron tomegkiilonbsége [5]).

Ebben a kontextusban a kauzalis dinamikus harom-
szogelés (CDT) nem egy alternativ kvantumgravitacids
elmélet, hanem az 4ltalanos relativitas statisztikus, kvan-
tumszinten diszkretizalt megkozelitése. A tiszta CDT
modell nem tartalmaz extra paramétereket az altalanos
relativitdson tdl, de lehetdséget nyujt alternativ elméle-
tek vagy anyagmezdk, példaul mértékmezdk, fermionok
vagy skalarmezdk térid6vel valé kolcsonhatasanak vizs-
galatara is.

A numerikus szimulaciok sordn a kezdeti racsstruk-
tira, mint példaul a topolégia (gémb, torusz vagy egyéb
egzotikus peremfeltétel) és a szimplexek dimenzidja,
nem hatarozza meg egyértelmten a létrejové kvantum-
jol szemlélteti az alabbi példa: képzeljiink el egy halom
[1x1x1] méretd legdelemet. Bar minden blokk harom-
dimenzids, ha ezeket ezer rétegben egymasra helyezziik,
az igy létrejove struktira [1 x 1 x 1000] alaku lesz, amely
viselkedésében inkabb egy egydimenziés rendszerhez
hasonlit. Ennek megfelel6en effektiv dimenzidja dx = 1.

3.1. Avilagegyetem geometriai

A geometridk, melyeket a szimplexek Osszeragasztasa-
bol kaphatunk, jelent6sen kiilonbozhetnek egymastdl,
egyesek fraktalszertiek, masok pedig lehetnek akar
egész egyszerlek, és tulajdonsagaikat a modell x,, «,,
A csatolasi paraméterei hatdrozzak meg. A Monte Car-
lo-szimulaciok sordn ezek lesznek a bemeneti para-
méterek, ezek hatdrozzdk meg a modell fazisterét
hasonléan ahhoz, ahogy a viz kiillonb6z6 halmazalla-
potait a hdmérséklet és a nyomas. A CDT-fazisdiagram
(4. abra) négy elkiiloniilé geometriat tartalmazé régio-
ra oszlik.

A szimulacié célja, hogy azonositson egy fizikailag
relevans fazist, amelyben a kvantumtéridé viselkedé-
se megfelel a megfigyelhet6 univerzumunknak. A CDT
modell esetében ez a C avagy de Sitter-fazis lesz.
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4. dbra. A CDT modell fazisdiagramja: A (fa grafok), B (szingularitas),
C; (dimenziéredukalt) és C (fizikailag relevans de Sitter-fazis)

3.2. Az Univerzum alakja

A CDT egyik legfontosabb eredménye, hogy a C fazis
térid6-geometriaja jol kozeliti a klasszikus de Sitter-
vilagegyetemet, a mi univerzumunk nagyskalds geo-
metrigjat.
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S. dbra. A szimuldlt kvantumgeometria-rendszermérettel normalizalt,
egymasra skélazott térfogat-idé profilja jol illeszkedik a négydimenzids
tagulé de Sitter-viligegyetemhez

Az id6szeletek N(2) térfogatat a rajtuk talalhaté pen-
tachoronok (és egyben tetraéderek) szamanak varhaté
értékével azonositjuk, hiszen a fizikai térfogat csak a
{4, 1} tipusd pentachoronok t-szeleten 1évé tetraéderei-
bél ered (mely pontosan megegyezik az {1, 4}-ek szama-
val).

A szimulalt térfogat-id6é profilok skdlazasa utan (5.
dbra) ezek jol illeszkednek Hartle és Hawking mini-
superspace modelljéhez [6], amely a térid6 egyetlen val-
tozora, a sugarra redukalt alakjat irja le. Az eredmények
alapjan a szimulalt kvantumtérid6 térfogata, gorbiilete
és tagulasa mind megerdsitik, hogy a kialakul6 univer-
zum négydimenzios, és a klasszikus kozmolégiai model-
lekhez hasonlé viselkedést mutat.

3.3. Effektiv fraktaldimenzid

Egy diffazids folyamattal (pl. véletlen bolyongis) meg-
mérhetjiik egy adott tér effektiv dimenzidjat, amely a
CDT minden fazisiban mas eredményt ad. Egy vélet-
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6. dbra. A spektralis dimenzi6 (ds) futédsa a difftzios 1épések (o) fiiggvé-
nyében a de Sitter fazisban. A kiilonb6z6 szinii egymasra skalazott gor-
bék kiilonboz6 x, és A értékeknek felelnek meg

len bolyongas kezd6pontba valé visszatérésének valo-
szinliségébdl levezethetjiik az tgynevezett ds spektrdlis
dimenzidt, amely nagy tavolsagokon a téridé dimenzio-
jahoz tart, mig kis tavolsagokon képes a geometria frak-
taltermészetét megmutatni (6. dbra).

A de Sitter-fazisban ez nagy tavolsagokon ds = 4, mig
kis tavolsagok esetén ds = 1,5-2 kozott valtozik. Ez a
megfigyelés eltér attd], ahogy egy lapos-klasszikus térid6
viselkedik, ami azt is jelenti, hogy nagy energiakra, illet-
ve a korai Univerzum fizikdjara ez a joslat hatassal lehet,
ez altal tesztelhet6 a CDT modszer.

A keletkezett térid6 fraktalszerd szerkezete miatt a
tavolsigok megmérése és a szomszédsagi relacié koze-
li pontok ko6zo6tt nem egyértelmi. Lehetnek pontok a
téridében, amelyek kozeliek a racson, de a racs nem va-
l6sagos, a fizikat ki kell abbél hamozni, amit egy mezd
bevezetésével is elérhetiink.

3.4. A CDT kozmikus hal6zata

A leképezés egy matematikai eszkoz, amely lehet6vé
teszi, hogy egy bonyolult struktirat egyszeribb, job-
ban kezelhet6 térben abrazoljunk. Egy ilyen leképezés
példaul egy négydimenzids, gorbiilt Riemann-sokaség,
M (mint amilyen a CDT-ben el6allé kvantumtéridé)
és egy sik, kompakt sokasdg, N kozott torténhet. Az
utobbi gyakran egy térusz, 7, ahol minden irdny pe-
riodikus: azaz a tér végtelen ismétl6désként értelmez-
het6.

A leképezést egy skalairmezd, ¢(x) valdsitja meg,
amely a sokasig minden pontjahoz egy valds szamot
rendel. Fizikai példdja ennek a Higgs-mezd, de itt inkabb
egy matematikai eszkozként hasznéljuk. A téruszra vald
leképezés soran minden mezéértéket a [-0,5; 0,5] inter-
vallumra korldtozunk, ahol a hatdron vald atlépéskor a
mez0 egy 0 értékkel ugrik, ezt egy b jelolést hatarmatrix
kédolja. Igy biztositott a folytonossag a periodikus hata-
rokon.

A leképezéshez tartoz6 diszkrét hatis a skalarmez6-
re az alabbi formaban irhato fel:
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ahol 4, j a hdromszogelés szimplexeit indexelik, b; a pe-
riodikus hatdrokbol szarmazdé korrekcidkat tartalmazza,
0 a mez6ugras mértéke, mig L a Laplace-operator diszk-
retizalt valtozata. A hiarom tag koziil az elsé a mezd si-
masagara torekszik, a masodik a hatarfeltételeket veszi
figyelembe, a harmadik pedig csak egy dllandd, amely a
szimulaci6 szempontjabol irrelevans.

A Monte Carlo-szimulaci6 soran a mez§ ugy fejlédik,
hogy minimalizalja ezt a hatast. Mivel L pozitiv definit,
a minimalis hatasd konfiguraci6 egyértelmtien meghata-
rozhat6 az alabbi egyenletrendszer megoldasaval:

¢=L"5b. )

Ez megadja azt a leképezést, amely a térid6 szimplexei-
nek belsé viszonyait a lehetd legkisebb torzitassal jeleniti
meg a téruszon.

Ha minden téridéiranyhoz (x, y, z, t) kiilon skalar-
mez4t rendeliink, négy fiiggetlen mezéértéket (4., ¢,,
#., ¢:) kapunk minden szimplexhez. Ezek egy négy-
dimenziés harmonikus koordinitarendszert alkotnak,
melyek segitségével a CDT-ben el6alld, koordinatdk
nélkiili kvantumgeometridk vizualisan abrazolhatéva
valnak.

7. dbra. A négydimenzi6s mezékoordinatik hiromdimenziés (4., ¢,, 4.)
projekciodja, ahol a szin a ¢, mez6 értékét jeloli

A 7. dbrdn egy ilyen térkép lathat6: minden pont egy
szimplexet jel6l a mezSkoordinatik terében. A szinezés
a ¢, értéke szerint torténik, ahol a negativ értékek kék,
a pozitivak piros szinliek. A megjelend stirtisodések, fila-
mentumok és iires terek nem anyagi struktirak, hanem
a kvantumtérid6 térfogatelem-siriségeinek lenyomatai.
Meglep6 moédon ezek a strukturdk emlékeztetnek a meg-

figyelt vilagegyetem nagyskalas hdl6zatos szerkezeté-
re, habdr itt pusztin a térid6 kvantumszerkezetének
kivetiiléseirdl van szd.

4. Kolcsonhatas az anyaggal

A CDT haromszogelt raicsanak geometriaja a benne ta-
lalhaté anyagmez6k paramétereinek valtoztatasaval ala-
kithat6. A kolcsonhatds mibenlétét az anyagmez6hoz
tartozo hatas irja le. A (6) egyenletben ismertetett hatas
példaul csak a kozvetlen egymads mellett 1év6 szimplexek-
re van hatassal: megvizsgalva a szomszédos szimplexben
1év6 mez6 értékét a Monte Carlo-szimulaciok altal ja-
vasolt 1épések elfogadasi valdszinlisége valtozni fog, igy
tudja a CDT-ben az anyag meggorbiteni a teret, mig a
gorbiilet vonzza vagy taszitja az anyagot.

4.1. Skalarmez6 a CDT-ben

Ha a (6) egyenletben bemutatott hatast figyelembe vesz-
sziik a Monte Carlo-szimulicié sordn, akkor a mezd is
részt vesz az evoliciéban: a mezd eloszlasa hatassal van
arra, hogy a szimulacié mely haromszogeléseket részesiti
elényben. A § paraméter szabdlyozza a mez6 hatasat: kis
0 esetén a mez6 gyenge, és alig modositja a geometriat;
nagy 0 esetén viszont a mez6 dominanssa valik, és er6-
sen befolyasolja a kialakul6 térid&strukturat.

O

vou

8. dbra. A fels6 két dbra a ¢,, ¢, mez6projekcioban dbrazolja a téridot:
balra a tisztdn geometrikus (anyag nélkiili) eset, jobbra pedig a nagy
d-val futtatott szimulacié eredménye, ahol a skalirmezé jelenléte to-
polégiai valtozast idéz elS. Alul a fluktualé kvantumgeometria effektiv
topoldgiai atalakuldsa van szemléltetve. Forrds: [7]

A 8. dbrdnlathatd, hogyan hat a skalarmez6 a téridé szer-
kezetére. Kis 0 értéknél a mez6 nem tor meg lényeges
geometriai szimmetriakat: a leképezés sordn egy toroi-
dalis szerkezet jelenik meg. Ahogy d n6, a mez6 eloszlasa
mar jelentds dinamikai szerepet tolt be, és az igy kialaku-
16 térid6 topoldgidja mar nem egyezik meg az eredetié-
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vel. Ezt a valtozast a geometria topoldgiai fazisdtalakuld-
sdanak is tekinthetjiik, amely jol lathat6 a mez&projekcidk
megvaltozasan. A szimulaci6 tehat lehetGséget ad arra,
hogy anyag jelenlétében vizsgaljuk a téridé kvantum-
szerkezetének modosulasat.

4.2. Topologiai toltés Yang—Mills mértékmezdk
esetén

A standard modellhez tartozé komplexebb kvantum-
mez8k beillesztése a CDT-geometriakba 4j technikai
kihivasokat jelent. Mig a hagyomanyos racstérelméle-
ti moédszerek periodikus, szabalyos rdcsokra épiilnek,
a CDT rendezetlen, sztochasztikus haromszogelésein
ezek nem alkalmazhaték kozvetleniil. Ugyanakkor gj
moédszerekkel lehet6ség nyilik mértékmezok (példaul
gluonok) és fermionok (példaul kvarkok) diszkretizalt
reprezentacidjara. A mértékmez6k egyik kulcsfontos-
sagu jellemzGje a topoldgiai téltés, amely tobbek kozott
az erds kolcsonhatas egyik kvantumszama, és amely nem
trivialis térszerkezetek jelenlétére utal [8].

A topologiai toltés strtiségként jelenik meg a tér-
idében, amelyet a haromszogelés egyes szimplexeiben
kiilon-kiilon is mérhetiink. Az igy kapott sirliségi el-
oszlas Osszehangolhat6 a korabban ismertetett skalar-
mez6-leképezéssel, igy a mez6koordinata-rendszer se-
gitségével vizualizalhatéva valik a topoldgiai struktira.
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9. dbra. A mértékmez8hoz tartozd topoldgiai siirlisodés (instanton)
megjelenitése a CDT-ben. Az dbra tengelyeit a ¢,, ¢, skalirmezd-koor-
dindtak és a diszkrét folidzasi ido, ¢ adjak

A 9. dbra egy ilyen vizualizaciét mutat, ahol a ten-
gelyeket a ¢,, ¢, skalirmezdk és a hiaromszogelés ¢
foliazasi paramétere adjak meg, a ¢, koordinata elha-
gyasaval. Az abran egy instantonszer( szerkezet figyel-
het6 meg: egy lokalis slirtisdés, amely stabil topologiai
toltésként értelmezhetd.
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A foliazasi id6 diszkrét jellege, amely a CDT-szimu-
laciok diszkretizaciés mellékhatdsa, azaz racsartefaktu-
ma, j6l megfigyelhet6 az id6irany menti rétegez6désben
a 9. dbrdn. Ennek ellenére a ¢ koordinata felhaszndlasa
rendkiviil hasznos, mivel lehetséget nyujt annak be-
mutatdsara, hogy a slirlisédés nemcsak a mez6koordi-
nata-térben, hanem a haromszogelés daltal meghata-
rozott kvantumgeometriaban is megjelenik. Ez Gjabb
kapcsolatot teremt a geometriai és a mez&elméleti rep-
rezentaci6 kozott, és megerdsiti a mezbleképezés mod-
szerének érvényességét.

5. Konkluzié

A CDT egy technikai eszkdz a gravitacié kvantumel-
méletének vizsgalatira. Ahogy a racstérelmélet sem egy
kiilonallé elmélet, hanem az er6s kolcsonhatas szamito-
gépes megfigyelésére jott l1étre, Ggy a CDT eredményeit
sem egy kiilonall6 elméletként kell kezelni, hanem a gra-
vitacié racstérelméleteként. A modell a newtoni és koz-
molégiai konstansok kiilonb6z6 értékére kiilonboz6 tu-
lajdonsagu téridéket mutat be, melyek kozott taldlhatd
olyan paraméterérték, melyre a mi vildigunkkal meg-
egyezd négydimenzids taguld vilagegyetemet kapunk.
A numerikus szimulaciok segitségével képesek vagyunk
a kapott struktirak nagy- és kisskalas fraktalszerkezetét
vizsgalni, illetve meghatarozni annak effektiv dimenzio-
jat és topoldgiajat. Mivel a racs maga a téridd, a racs tu-
lajdonsagaibol megkapjuk a téridé viselkedését, és a racs
pontjaira (épitéelemeire) még anyagi mezoket is tehe-
tlink, melyek képesek ezen tulajdonsagokat megvéltoz-
tatni. Hamarosan eljutunk odaig, hogy a teljes standard
modellt képesek lesziink a dinamikusan valtoz6 térid6t
reprezentalo racson szimulalni.
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ZITTERBEWEGUNG - EGY KEVESSE ISMERT
ALTALANOS KVANTUMOS MOZGASFORMA
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A Zitterbewegung torténete

A Zitterbewegung (a tovabbiakban réviden ZB) azok
kozé szakkifejezések kozé tartozik, amelyek a kvantum-
elmélet dalias ifjakoraban, az 1920-30-as években szii-
lettek, amikor még a vilagfordité cikkek nagy része
német nyelven, f6leg a Zeitschrift fiir Physik hasabjain
jelent meg. Ma mar ez a folydirat is angol nyelv{i publika-
cidkat kozol, de a ZB neve - néhany tarsahoz hasonldan,
mint pl. Bremsstrahlung (fékezési sugarzas), Eigenvektor
(sajatvektor) - a fizikusok sz6haszndlatdban megmaradt
a német eredetinél.

A ZB sz6 szerinti jelentése ,reszketé mozgas” (Bewe-
gung = mozgas, zittern = reszketni, dideregni). Ezt a fur-
csa jelenséget Erwin Schrodinger (1887-1961) fedezte
fel (papiron, szamitdsokkal) 1930-ban, amikor a Dirac-
egyenlet megoldasait tanulmanyozta [1, 2]. Paul Dirac
(1902-1984) Schrodinger nem relativisztikus hullam-
egyenletét hazasitotta 0ssze a specialis relativitaselmélet
kovetelményeivel. A Dirac-egyenlet csodalatos médon
leirta az elektron spinjét és a hozza kapcsolddé magne-
ses momentumot, bonuszként pedig megjdsolta az anti-
részecskék létezését is.

Schrodinger a legegyszer(ibb esetet vizsgalta: a Dirac-
egyenlet altal leirt részecske szabad, erémentes mozga-
sat. Galilei és Newton 6ta tudjuk, hogy a magara hagyott
(kornyezetével kolcsonhatasban nem allo, erémentes,
roviden: szabad) részecske egyenes vonald, allandé se-
bességli mozgast végez. Ezt a kdzismert allitast nem val-
toztatta meg a 20. szazad két vilagrenget6 fizikai forra-
dalma, a specialis relativitiselmélet és a kvantumelmélet
sem. A leiras fizikai, szemléleti és matematikai kerete
megvaltozott, de az eredmény valtozatlan maradt: mind
a specidlis relativitiselméletben, mind a nem relativisz-
tikus kvantummechanikdban konnyen levezethetd,
hogy a szabad részecske egyenes vonalban, allandé se-
bességgel mozog (a kvantumelméletben ez az allitds a
helyoperator varhato értékére vonatkozik). Kézenfekvo-

Ddvid Gyula immar otvenedik éve oktatja az
ELTE fizikushallgatéit. Kutatémunkdjiban re-
lativisztikus dinamikaval foglalkozik. A NYIFFF
fizikaverseny alapitéja, az Ortvay Rudolf Fizika-
verseny és az ,Atomcsill” el6adds-sorozat tars-
szervezbje, ez utobbinak sokszoros el6addja.
Szamos ismeretterjeszt6 fizikai és kozmoldgiai
el6adasa terjed a neten. Hisz abban, hogy a fizi-
kusok vilignagy esze el6bb-utobb betolti a tagu-
16 teret - ahogy az a Fizikusnétiban is szerepel
(amelyet nem mellékesen & irt).

DAVID GYULA, CSERTI JOZSEF: ZITTERBEWEGUNG — EGY KEVESSE ISMERT ALTALANOS KVANTUMOS MOZGASFORMA

©E-mail: dgy4242@gmail.com

nek tlint a kovetkeztetés, hogy hasonlé marad a helyzet
e két elmélet majdani egyesitése soran is. Ezért okozott
nagy meglepetést — el6szo6r Schrodingernek, aztan a fizi-
kus-kozvéleménynek -, hogy ez a kovetkeztetés téves: a
Dirac-egyenletbdl levezethetd, hogy a szabad részecske
alland6 sebességl mozgasara rarakdédik az impulzus ira-
nyara merdleges periodikus ,reszket6” mozgas. Mintha a
Dirac-részecske egy dugohuzé alakd gorbe (hélix) men-
tén mozogna (1. dbra).

Egy m tomegl szabad részecskét E energidja és p
impulzusvektora jellemez, ezek kozott a relativitiselmé-
letben fennall az E* = ¢*p? + m*c* Osszefliggés, ahol ¢ a
vakuumbeli fénysebesség. A specialis relativitiselmélet
szerint e részecske sebessége V = ¢*p/E, ennek nagysaga
mindig kisebb ¢-nél. A dugéhtizén lezajlé mozgas atla-
gaként a menetemelkedés figyelembe vételével kiadodik
az elvart V ,drift-” (sodrdédasi) sebesség. A részecske im-
pulzusa a driftsebességgel aranyos, és allando.

1. dbra. A Zitterbewegung klasszikus elképzelése: a dugdhizé alakd
gorbén végbemend v pillanatnyi sebességi mozgas id6beli atlagaként
kialakul a klasszikusan elvart V driftsebesség
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A sebesség és az impulzus kozotti egyszerd, az ele-
mi fizikaban megszokott p = mv alakd kapcsolat mar a
klasszikus mechanika Lagrange- és Hamilton-formaliz-
musaban is megbomlik. Ilyen durva eltérésre azonban
senki sem szamitott. A Dirac-elméletben az impulzus
komponenseit egymassal kommutalé operatorok irjak
le, mig a sebességoperator komponensei egymaéssal nem
kommutal6é operatorok - a helyoperator ezek alapjan
kiszamitott varhat6 értéke pedig a dugohizé alaku pa-
lyat irja le.

Egy viszonylag egyszerlinek latsz6 probléma ilyen
nem vart megoldasa természetesen fizikai magyaraza-
tot, interpretaciot igényel, ossze kell illeszteni mas fizi-
kai ismeretekkel - emellett persze meg kell préobalni
kisérletileg igazolni. Az utébbi feladat reménytelen volta
hamar kideriilt. Schrédinger megolddsaban a dugéhuzé
sugara, azaz a ZB amplitidodja az elektron Gn. Comp-
ton-hullamhossza nagysagrendjébe esik: A = #A/mc
(ahol % a Planck-alland6, m a vizsgalt részecske tomege,
¢ a fénysebesség) - ez az elektron esetében 4-10°" m,
azaz 0,4 femtométer, ami 137-szer kisebb a hidrogéna-
tom méreténél. A rezgés frekvenciija pedig (w = ¢/Ac,
amia 10*' Hz nagysagrendbe esik. A mozgas amplitidodja
tul kicsi, frekvencidja tal nagy - a jelenség kisérletileg
detektalhatatlan.

Megpezsdiilt viszont az elméletalkotok fantaziija.
El6szor azt gondoltak, hogy az elektronnak ez a mik-
roméretl ,belsé rezgése” hozza létre a spin jelenségét.
Kés6bb egy egész iskola alakult, amely évtizedeken at
dolgozott az elektron kiilsé és bels6 allapotterét, kiils6
és bels6 mozgasat egységesen leir6 algebrai formalizmu-
son. A ZB-t kapcsolatba hoztik a Mach-elvvel és szamos
mads egzotikus fizikai elképzeléssel is. Ezeket a furcsa
oOtleket részletesen ismerteti a [6] dolgozat torténeti be-
vezetGje. Végiil azonban az észlelhetetlen ZB kiszorult a
kvantumelmélet f6aramabdl, és megmaradt a relativisz-
tikus kvantummechanika furcsasiganak - ily médon
szerepel sok példatarban, pl. [13].

Lényegesen megvaltozott a helyzet a kétezres évek
elején. Ekkor a kondenzalt anyagokkal foglalkozé ki-
sérleti és elméleti fizikusok szdmos 4j nanofizikai és
spintronikai rendszerrel talalkoztak, és egyszertsitett
elméleti modelleket allitottak fel e rendszerek elektron-
szerkezetének és mozgasainak tanulmdnyozasara. Geim
és Novoselov példaul 2004-ben fedezte fel a grafént, a
korabban elképzelhetetlen kétdimenzids anyagot, ame-
lyet szénatomok egyetlen hexagonalis szerkezet( rétege
alkot. (A grafén és mas spintronikai rendszerek érdekes
Uj tulajdonsagairdl részletes ismertetést nyujt a [12] dol-
gozat.) Az Uj rendszerek elméleti vizsgalata soran deriilt
ki, hogy j6 néhany ilyen modellben az elektronok moz-
gasa hasonlit a Schrodinger altal leirt Zitterbewegung-
hoz.

Ez nagy meglepetést okozott, hiszen a szilard anyag-
ban mozgd elektronok nagyon messze allnak a szabad
relativisztikus részecskékt6l. A grafénban példaul az
elektronok tipikus sebessége mintegy haromszazszor
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kisebb a vakuumbeli fénysebességnél. Viszont érdekes
moddon a ZB amplitidoja sokkal nagyobbnak, frekven-
cigja sokkal kisebbnek adédott, mint az eredeti Schro-
dinger-féle esetben — mar-mar kozel all a kisérleti kimu-
tathatdsag hataraihoz.

A kovetkez6 években egyre tobb egzotikus nanofizi-
kai és spintronikai rendszerben mutattik ki (elméleti-
leg) a ZB-hez hasonlé mozgas jelenlétét. Nyitva maradt
a kérdés, hogy ennek a szilard anyagokban felfedezett
jelenségnek mi koéze van az eredeti Schrodinger-féle
Zitterbewegunghoz.

A kérdést e cikk szerzbinek 2006-2010 kozott meg-
jelent munkai [6-9] tisztaztak a Zitterbewegung alta-
lanos elméletének kidolgozasaval. Kideriilt, hogy a
ZB-nek semmi kdze sem a spinhez, sem a relativitiselmé-
lethez. A ZB univerzalis kvantumos mozgasforma, ami
bizonyos fizikai és matematikai feltételek mellett minden
kvantumrendszerben fellép. Puszta véletlen, hogy az
emberiség arelativisztikus szabad elektron Dirac-egyen-
letével kapcsolatban taldlkozott els6 izben ezekkel a ma-
tematikai feltételekkel.

Az alibbiakban ismertetjiik a ZB fenndllasanak felté-
teleit, és néhany példat mutatunk nanofizikai megjelené-
sére.

A Zitterbewegung feltételei

Eredményeink szerint Zitterbewegung 1ép fel egy kvan-
tumos rendszerben, ha a) a rendszer extra belsd sza-
badsagi fokokkal rendelkezik, ezért leirdsara tobbkom-
ponensi hullamfiiggvény sziikséges, b) a rendszer - és
ezzel a dinamikajat leir6 Hamilton-operator - invarians
a térbeli eltolasokra nézve, c) a transzlaciés mozgashoz
tartoz6 impulzus és az extra szabadsagi fokok kozott
kolcsonhatas, ,altalanositott spin—palya-csatolas” all fenn.
Vizsgaljuk meg egyenként ezeknek a feltételeknek a fizi-
kai jelentését!

Tobbkomponensi hullamfiiggvény

A kvantumelméletben a fizikai rendszerek allapotainak
halmaza komplex linedris teret, Gn. Hilbert-teret alkot,
amely a legtobb esetben végtelen dimenziés. Ennek az
absztrakt allapottérnek az elemeit igen kényelmes fiigg-
vényekkel reprezentdlni - ebben az esetben a fizikai
mennyiségeknek megfelel6 operatorok e fiiggvényekre
hat¢ differencidloperatorok lesznek.

Mar a kvantumelmélet korai éveiben kideriilt, hogy a
fenti leiras sokszor a legegyszer{ibb kvantumos objektu-
mok (pl. az elektron) esetében sem elegendd: a részecske
kielégit6 jellemzésére, bizonyos extra szabadsagi fokok
figyelembe vételére tobbkomponensi hullimfiiggvényre
van szitkség. Matematikai nyelven: a rendszer Hilbert-
tere egy végtelen dimenzios fliggvénytér és egy véges di-
menziés komplex vektortér tenzori szorzata. A hullim-
fiiggvényt agy foghatjuk fel, mint egy fiiggvényekbdl allo
véges sok komponensi vektort. Az ilyen allapotvektorra
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kétféle operator (tenzori szorzata) hat: egyrészt a meg-
szokott differencialoperatorok, masrészt véges négyze-
tes matrixok.

Ilyen kétkomponensi hullimfiiggvényt el6szo6r Pauli
vezetett be az elektron spinjével kapcsolatos extra sza-
badsagi fok leirdsara. A relativisztikus elektron Dirac-
elméletében mar négykomponensli hullamfiiggvény
szerepel: az egyik kettdsség itt is a spint irja le, a masik
a részecske energidjanak pozitiv vagy negativ voltaval
kapcsolatos. Bonyolultabb rendszerek esetén kevésbé
szemléletes extra szabadsdgi fokok is el6fordulnak: a
grafén elektronja példaul az an. ,volgy” szabadsagi fok-
kal rendelkezik, ezt irja le a hullimfiiggvény két kom-
ponense. A szilardtestfizika mas kozelité modelljeiben
altalaban az elektron szamdara elérhet6 megengedett
energiasavokat jelenti az extra szabadsagi fok.

Szabad és kvaziszabad részecske -
impulzus és kvaziimpulzus

A klasszikus mechanikabdl tudjuk, hogy az erémentes,
szabad mozgast végzé objektum lendiilete (impulzusa)
alland6. Emmy Noether 1918-as tétele szerint az impul-
zus megmaradasa a rendszer térbeli eltolhatdsagabol,
transzlaciés invariancidjabol kovetkezik. Ez az dltaldnos
tétel mind a klasszikus, mind a kvantumos fizikiaban
fenndll. A kvantumelméletben az alland6 impulzusi ré-
szecskének rogzitett frekvenciaju (igy energidju) és hul-
lamhosszu sikhullam felel meg.

A Dirac-féle szabad elektron esetében az eltolasi szim-
metria nyilvanvaléan érvényes, hiszen az iires térben
semmilyen kitiintetett pozicié nem létezik. Mas a helyzet
azonban a szilardtestekben mozgd elektronok esetében.
Ezek nem erémentes mozgast végeznek, hiszen a kris-
talyracsot alkot6 ionok periodikus elektromos potenci-
alterében mozognak.

A kvantumfizikusok ezt a problémat mér az 1920-as
években megoldottak. Ekkor dolgoztak ki a kondenzalt
anyagok savszerkezetének elméletét, és ennek kapcsan
megmutattak, hogy a kristalyracsban terjed6 elektron-
hullam is tekinthet6 egy impulzusjellegli paraméter altal
jellemzett hullimnak - csak éppen egy ilyen impulzus-
értékhez tobb lehetséges energiaszint tartozik, valamint
a hullam impulzusa és energiaja kozott a szabad részecs-
ke esetétdl eltérd, jelentésen bonyolultabb osszefiiggés
all fenn. A szabad részecske hagyomanyos impulzusatél
val6é megkiilonboztetés céljabdl az ebben az elméletben
szerepl6 mennyiséget kvaziimpulzusnak nevezik. A
racsban mozgé elektront ezért kvaziszabadnak nevez-
hetjiik. A kondenzalt anyagok elektronrendszerének
savelméletérdl példaul Sélyom Jend tankonyvébdl [16]
tajékozdodhatunk.

A ZB matematikai leirdsa sordn a legtobb esetben a
kvaziimpulzus a hagyoméanyos impulzushoz hasonléan
folytonos valtozénak tekinthetd, ezért a kétféle impul-
zusfogalom megkiilonboztetésére nincs szitkség - a to-
vabbiakban csak az ,impulzus” kifejezést hasznaljuk.

Igy a fizikailag nagyon kiilonb6z6 két eset, a vikuum-
ban mozgé szabad Dirac-elektron és a szilardtest-fizikai
modellek kvaziszabad részecskéi analég mdédon targyal-
hatok.

Heisenberg-kép

Ezt a leirasm6dot Werner Heisenberg vezette be 1925
nyaran irt, 6sszel megjelent cikkében [3], amelyet hama-
rosan kovetett Born és Jordan masodik [4], majd a harom
szerz6 harmadik cikke [5] - ez a cikksorozat alapozta
meg a kvantumelmélet métrixmechanikai felépitését.
(A nevezetes harom cikk magyarul is olvashat6 a ,Kvan-
tummechanika” c. cikkgyljteményben, Gyorgyi Géza
forditdsaban [15].) A fizikusok matematikai ismeretei-
hez sokkal kozelebb allo, ezért gyorsabban elfogadott
Schrodinger-féle hullimmechanika elsé publikacidja
csak néhany honappal késébb, 1926 januarjaban jelent
meg. Némileg 6nkényesen Heisenberg els6 cikkéhez ko-
tik a kvantumelmélet sziiletését, ezért is iinnepli a Fizi-
kai Szemle jelen, 2025 nyari szama az elmélet szazadik
sziiletésnapjat.

A kvantummechanika Schrodinger-féle megfogal-
mazasaban a hullamfiiggvény id6beli valtozasat keres-
siik, mikozben a fizikai mennyiségeket reprezentild
operatorok allandéak. Ezzel egyenértékd az tGn. Hei-
senberg-kép: itt az allapotvektor alland6 (megegyezik a
kezdeti pillanatban érvényes allapottal), viszont az ope-
ratorok valtoznak az id6ben.

Ha a vizsgalt rendszernek van klasszikus megfelel6-
je (mint a sokat vizsgalt harmonikus oszcillatornak és
a hidrogénatomnak), akkor az operatorokra vonatkozé
mozgasegyenletek megegyeznek a klasszikus mechani-
kabol ismert egyenletekkel — ezért az ismert megolda-
sokat is azonnal felhaszndlhatjuk. Izgalmas Gj szitudci6
all el6 azonban akkor, ha a rendszernek nincs klasszi-
kus megfelelGje. Ez a helyzet a tobbkomponensi hul-
lamfiiggvénnyel leirand6 rendszerek esetében: az extra
(spin-, volgy- stb.) szabadsdgi fokoknak nincs klasszikus
analdgiajuk. Ilyenkor az operatorok mozgasegyenlete-
inek megoldasa érdekes Uj jelenségek leirasahoz vezet-
het. A ZB esetében ezért a Heisenberg-kép hasznalatat
részesitjiik elényben: igy a kezdéfeltételek okozta eset-
legességektdl eltekintve a jelenség lényegére koncentral-
hatunk.

Ha a vizsgalt rendszer eltoldsinvaridns, akkor az
id6fejlédést leiré H Hamilton-operator nem fiigghet az
% helyoperatortdl, csak a p impulzusoperatortél: H =
H(p). Ebben az esetben a rendszer allapottere felbom-
lik a p impulzusoperator folytonosan sok p sajatértéké-
hez tartozo6 alterek direkt 0sszegére. Ha vizsgalatunkat
egy ilyen altérre koncentréljuk, ott a p impulzusopera-
tor egyszeriien a p sajatértékével helyettesithetd. Ezért
tovabbiakban az impulzus komponensei nem operato-
rok, hanem puszta szdmok lesznek. Ebben az altérben
a Hamilton-operator egy véges H(p) hermitikus mat-
rixszal adhat6é meg, amely az extra szabadsagi fok véges
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dimenzids vektorterén hat. E matrix sajatértékei adjak
meg a rendszer p impulzusértékhez tartoz6 lehetséges
energiaértékeit. A végtelen dimenziés Hilbert-téren valo
nehéz manipulicidk helyett tehat egy jol ismert, egy-
szer matematikai problémaval, egy véges matrix sajat-
értékeinek meghatarozasaval kell foglalkoznunk.

Altalanositott spin-palya kélcsdnhatds

Az egyes p impulzusértékhez tartozé H(p) effektiv Ha-
milton-operator természetesen fiigg az impulzustél. Ha
a matrix diagonalis, akkor a f6atloban 4ll6 értékek koz-
vetleniil megadjik az operator E,(p) sajatértékeit. Er-
dekesebb az az eset, amikor a H(p) matrixnak nem dia-
gonalis komponensei is vannak. Ez azt jelenti, hogy az
extra szabadsagi fokok kozti kapcsolat fiigg az impulzus
p értékétdl: az impulzus jellemezte transzlaciés mozgas
kolcsonhat a rendszer extra szabadsagi fokaival. Ilyen
kapcsolatot el6szor az atomhéjak szerkezetének tanul-
manyozasakor talaltak a kutatdk: az elektron palyamoz-
gasahoz és spinjéhez is tartozik magneses momentum,
ezek relativ beallasa pedig befolyasolja a rendszer ener-
gidjat. Ezt a kapcsolatot nevezték el spin-palya kolcson-
hatasnak. Ezért a tetsz6leges, tobbkomponensti hul-
lamfiiggvénnyel leirhat6é transzlacidinvarians rendszer
Hamilton-operatoranak nem diagonalis komponensei
altal képviselt jelenségre ,altalanositott spin-palya kol-
csonhatasként” hivatkozunk.

A helyoperator mozgasa a Heisenberg-
képben

Schréodinger nyomdn az %X helyoperator Heisenberg-
képbeli mozgisat szeretnénk meghatarozni. A Schro-
dinger- és a Heisenberg-kép kozti attérést a G(f) =
exp{-(i/#) H(p)t} uniter id6fejleszt6 operator és inverze
(egyben adjungaltja) segitségével lehet megadni (lasd
pl. [14]):

(1) = G()'%(0) G(1),

ahol X(0) a helyoperator Schrodinger-képbeli alakja. Im-
pulzusreprezentaciéban ez egyszerien x(0) = i (d/9p),
azaz egy szorzdtényez6tdl eltekintve az impulzusvektor
szerinti gradiens (lasd [14]).

Ez a gradiensoperator a G(t) operatorra hat, amely
H(p)-hoz hasonléan impulzusfiiggd komponensekbdl
allé matrix. Hogyan lehet ennek a gradiensét altalanos
esetben meghatarozni? Itt jon segitségiinkre a linedris
algebra egyik leghasznosabb (sajnos nem eléggé kozis-
mert) eredménye, a matrixfiiggvények alaptétele.

Irjuk fel az adott p impulzusértékhez tartozd H(p)
operatort H(p) = 2, E,(p) Q.(p) alakban, ahol az E, val6s
szamok a H(p) operator sajatértékei, a Q, matrixok pedig
a sajatalterekre vetit6 projektorok, természetesen mind-
egyik fiigg a p impulzustol. Ekkor a G(¢) id6fejleszté ope-
rator igy irhato fel:
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at)=Ye """ Qu(p).
k

Az impulzus szerint derival6 %(0) a Leibniz-szabaly
szerint egyszer az E;(p) energia-sajatértékeket, egyszer
pedig a Qi(p) projektorokat derivalja. Az eredményt
beszorozva az id6fejleszté operator ugyancsak projek-
torok szerint felbontott inverzével és kihaszndlva a pro-
jektorok ortogonalitdsit megkapjuk végeredményiin-
ket, a helyoperitor Heisenberg-képbeli mozgasat leir6
képletet (a szamolas részletei a [6] dolgozatban és a [9]
cikkben olvashatdk):

X()=X(0)+ Y Zoe 1Y VQu+ Y. > €™ Ly,
a a a b#a
ahol

OE,
Va (p) = &
op
a H(p) operator egyes sajatértékeihez tartoz6 un. parcia-
lis sebességeket jeldli, és a
Qs
op

Zab (p) = ihQa

matrixok az Gn. Zitterbewegung-egyiitthatok (ezek a p
szerinti gradiensképzés miatt egyben harmasvektorok
is), az ., = (E, - E;)/h értékek pedig a lebegési frekven-
ciak.

Ha a helyoperator id6t6l fiiggé varhato értéke irant
érdeklédiink, a fenti kifejezést jobbrol és balrél meg kell
szoroznunk a rendszer kezddallapotira jellemz6 tobb-
komponensi |¥(0)) vektorral: X(¢) = (¥ (0)|%(¥)|¥(0)).

Ertelmezés

A rendszer Heisenberg-képbeli, id6td! fiiggé helyope-
ratora a kovetkezd tagokbol tevdik Ossze: az els6 tag a
Schrodinger-képbeli allandé helyoperator, a masodik
egy allando6 eltolasvektor. A harmadik tag aranyos a ¢
id6vel, igy ez irja le a rendszer alland6 sebességli moz-
gasat. A sebességvektorhoz az egyes sajatértékekhez
tartoz6 modusok a kiilonboz6 V,(p) parcidlis sebesség-
operatorokkal jarulnak hozzd. Ezek nemcsak eltéré
nagysagiak, hanem kiilonb6z6 iranytak is lehetnek.
Ezért a kezd6allapottdl fiiggben a helyoperator varhato
értéke kiilonbo6z6 irany és sebességii mozgast végezhet.

A legérdekesebb természetesen a helyoperator képle-
tének utolso tagja. Ez irja le a voltaképpeni ZB-t, az azo-
nos impulzushoz tartozo kiilonboz6 energia-sajatértékek
kozti kiilonbségekhez tartozé lebegési frekvencidkkal
megvaloésuld, a Z,,(p) vektor irdnya szerinti polariza-
ciéju ,reszketé mozgast”.

A Schrodinger-féle ZB esetétdl és az els6ként megis-
mert nanofizikai rendszerektdl eltéréen az altalanos eset-
ben a ZB-t nem csak egyetlen frekvencia jellemzi: az azo-
nos impulzushoz tartoz6 kiilonb6z6 energiaértékek kozti
minden kiilonbségi frekvencia fellép. Monofrekvencias
rezgbémozgas csak nagyon egyszer(, kétsavos rendszer,
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illeve speciélis szimmetriafeltételek fennallasa esetén va-
l6sul meg.

Az els6ként megismert esetektdl eltéréen a ZB-rez-
gések mozgdsiranya sem mindig merdleges a driftsebes-
ségre és azimpulzusra. Tobb dltalunk vizsgalt nanofizikai
rendszerben felléptek a transzverzilis iranyud rezgések
mellett longitudinalis és ferde iranyu rezgési médusok,
s6t ezek keverékei is.

Az 1. dbrdn bemutatott, a Schrodinger-féle ZB-n
alapul6 régi elképzelés tehat jelent6sen leegyszerdisiti a
kvantumrendszerekben fellépé Zitterbewegung valo-
di komplexitasat. Ez a mozgas altalaban sok kiilonb6z6
frekvenciaju és iranyu rezgés szuperpozicidjaként valo-
sul meg, mint azt a késébbi dbrakon bemutatjuk.

Latjuk, hogy a ZB a fentebb részletezett feltételek
fennalldsa mellett sziikségszerten fellép, és matemati-
kai leirdsa teljes dltalanossdgban megadhat6. A ZB le-
begési jelenség: oka az azonos impulzusértékhez, am
kiilonb6z6 energiaértékhez tartoz6 energiaszintek koz-
ti kapcsolat, frekvenciait az energiaszintek tavolsaga ha-
tirozza meg.

Erdekességként megemlitjiik, hogy a ZB lebegési je-
lenségként tortént azonositisa lehet6vé tette a ZB-hez
hasonlé mozgasformak felismerését egészen mas jellegii
(klasszikus, nem kvantumos), 4m ugyancsak tobb kom-
ponenst hullamfiiggvénnyel leirhaté rendszerekben is.
Ilyen pl. a kristalyos kozegben terjed6 rugalmas hulla-
mok esete - itt az egyik polarizaciés médusban terjedd
hullimcsomag ,arnyéka” megjelenik a tobbi médusban
(lasd a 2010. évi Ortvay Fizikai Feladatmegold6 Verseny
17. feladatat [17]). A jelenség tavolabbi rokona fellép a
folytonos impulzusvaltozé helyett diszkrét, spinjellegii
valtozoval jellemezhet6 kvantumos rendszerekben is
(lasd 2 2025. évi Ortvay-verseny 18. feladatat [18]).

Klasszikus és nanofizikai alkalmazasok

A szakirodalomban kordbban vizsgalt esetek az imént
bemutatott altalanos képlet speciilis eseteként ad6dnak.
Az eredeti Schrodinger-féle ZB esetében a Dirac-egyen-
let, a grafén és mas nanofizikai rendszerek esetében pe-
dig az anyag legegyszeriibb kozelits leirasa 6sszesen két
energiaszinttel szamolt, ezért ezek kozott csak egyetlen
lebegési frekvencia lépett fel. Egy masik érdekes eset a [7]
cikkiinkben targyalt kvazispin esete — ekkor a rendszer-
nek sok energiaszintje van, de ezek egyforma tavolsag-
ban vannak egymastdl, és algebrai okbol csak a szomszé-
dos szintek kozti ZB-egyiitthatok kiilonboznek nullatol.
Ezért az Osszes fellép6é atmeneti frekvencia egybeesik,
arendszer mozgasa egyetlen ZB-frekvenciaval leirhato.
Egyik idézett cikkiinkben [7] a nanofizikai szakiro-
dalomban szereplé szamos rendszerre korabban (sok-
kal bonyolultabb mddon) kiszamitott ZB-jelenséget
sikeriilt a fenti altalanos formulaba t6rténé egyszerd be-
helyettesitéssel reprodukalnunk, nemegyszer az eredeti
szerzOk hibait is kijavitva. A cikkben tablazatos attekin-
tés taldlhatd a vizsgalt rendszerekrol (egy- és kétrétegii
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grafén, nehéz lyukak, Cooper-parok stb.). Egy késGbbi
cikkben pedig tjabb, a szakirodalomban nem szerepl6
rendszerek (Luttinger- és Rashba-Dresselhaus-modell)
esetében is kimutattuk a ZB felléptét - ezek tobb ener-
giaszintes, ezért tobb ZB-frekvencidval jellemezhet6
rendszerek voltak.

Igen érdekes, hogy az utébbi, az Rashba-Dresselhaus-
modell egyiitthatéinak specidlis kombindcidja esetén az
Osszes ZB-egyiitthat6 nullaval lett egyenld. Ezt egy spe-
cidlis szimmetria okozza: e paraméterkombinici6 ese-
tén a Q, projektorok nem fiiggnek az impulzustdl, ezért
a Z,, egyiitthatokban szerepl6 derivalt nulla lesz. Mivel
a modell szerint e paraméterek egyike kiils6 elektromos
potencial alkalmazasaval hangolhatd, felmeriil a ZB ve-
zérlésének lehetGsége is.

A mozgas képe

Az x(t) helyoperator egy p-tdl fiiggé matrix, amit ter-
mészetesen nem lehet lerajzolni. Abrazolhaté viszont
a helyoperitor x(t) = (¥(0)|x(¢)|¥(0)) virhat6 értéke,
megfelelden valasztott |¥(0)) kezdballapot esetén. En-
nek vizsgalatat végezte el 2009-ben didkunk, Széchenyi
Gabor tudomanyos diakkori dolgozataban [11]. Ebben
szamos érdekes abran mutatta be a ZB-mozgast végzo ré-
szecske helyzetének varhat6 értékét. Alabb ebbdl a dol-
gozatbol idéziink fel néhany abrat, a szerz6 engedélyével.

ZB a kétrétegli grafénban

A koribban mar emlitett grafén kétrétegl valtozata
szénatomok hatszogracsanak két sikrétegébdl all, a ré-
tegeket a hatszogek élén hatondl gyengébb kotés tartja
Ossze. A rendszer érdekes fizikai tulajdonsdgainak rész-
letes leirasa a [12] disszertiacioban olvashatd.

A kétrétegii grafén effektiv Hamilton-operatora a p
impulzustol fiiggd 4 x 4-es matrixokkal reprezentalhato.
Ennek megfeleléen minden p impulzusértékhez négy
E;(p) energiaérték tartozik. Ezek kozott Osszesen 6 at-
menet lehetséges, de az energiasavok szerkezete miatt
csak négy kiilonboz6 lebegési frekvencia 1ép fel, mert
két-két frekvenciaérték egybeesik. A kétrétegli grafén-
ban ezért négy ZB-moédus valosul meg, kozilik egy
longitudinalis, azaz az impulzussal parhuzamos irdnyu
elmozduldssal jar, mig a harom tovabbi médus transz-
verzalis, azaz az impulzusra merdleges, am kiilonb6z6
frekvenciaju rezgést jelent. Az X(¢) helyoperator pontos
alakja a [6] disszertacioban, a [11] dolgozatban és a [9]
cikkben talalhat6 meg.

A kétrétegi grafénban fellépé ZB imént vazolt gaz-
dag strukturaja igen bonyolult mozgasokat tesz lehet6-
vé. Egy ilyen mozgas képe lathat6 a 2. dbrdn. A p impul-
zusvektor az dbra x tengelye irdnyiba mutat. Ha a
helyoperatort egy rogzitett impulzusértékhez tartozé
négy moédus szuperpozici6éjabol inditjuk, akkor a hely-
operator varhato értéke a longitudinalis és transzverza-
lis médusok Osszetételébdl adodé palyat irja le az (x, )
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sikon, mikézben megvalésul az impulzusvektor irdanya-
ba mutaté lasst drift is.
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2. dbra. Az elektron helyoperatora varhat6 értékének mozgisa a két-
rétegi grafénban (Széchenyi Gabor TDK-dolgozatdbdl)

Megtehetjiik azt is, hogy a kezddallapotot kiilon-
b6z6 p impulzusértékekhez tartozd alterek allapot-
vektoraibdl rakjuk 6ssze, pl. Gauss-gorbe alakt hullam-
csomag formajaban. Ekkor a V,(p) parcialis sebességek
impulzusfiiggése miatt a hullimcsomag szétfolyik, a
kiillonb6z6 moédusokhoz tartozé komponensek mis
iranyba és mds sebességgel mozognak, ezért egy id6
utan megszlinik a koztiik levé térbeli atfedés, és a
ZB, azaz az energiaszintek kozti lebegés exponencia-
lisan lecseng. Egy ilyen eset figyelhet6 meg a 3. dbrdn,
amely az egyrétegl grafénban fellépé ZB lecsengését
mutatja.
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3. dbra. Lecseng6 amplitidoju ZB az egyrétegii grafénban: a helyope-
rator egyik komponensének idéfiiggése (Széchenyi Gabor TDK-dol-
gozatabol)
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A fenti tipikus esettel szemben azonban vannak olyan
rendszerek, amelyekben a Hamilton-operator specialis
alakja miatt két vagy tobb parcialis sebesség egybeesik,
a hullimcsomag egyes komponensei egyiitt mozognak,
ezért a tartosan fennmarad koztiik az interferencia. Ez a
»ZB-tartéshullam” jelensége. A kétrétegii grafénben ez a
specialis eset all el6, ugyanis két mdédus kozott az atme-
neti frekvencia az impulzustdl fiiggetleniil allando, ezért
a két parcialis sebesség azonos. A 4. dbrdn megfigyel-
hetd, hogy a tobbi mdédus exponencialis lecsengése utan
a specidlis frekvencija ,tartéshullim” hosszabb tivon
fennmarad.
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4. dbra. Nem lecsengd ZB (,ZB-tartoshullim”) a kétrétegli grafénban:
a helyoperator egyik komponensének idéfiiggése (Széchenyi Gabor
TDK-dolgozatabdl)

A ZB és a transzportjelenségek

Hogyan lehetne ténylegesen észlelni a ZB jelenségét? Bar
a szilardtestekben és nanorendszerekben megvaldsuld
ZB amplitiddja tobb nagysagrenddel nagyobb, frekven-
cidja pedig hasonléképpen kisebb az eredeti, Schrodin-
ger-féle ZB-hez képest, a kozvetlen kisérleti ellen6rzés
tovabbra sem lehetséges. Legféképpen azért, mert az
idézett szamitasok egyetlen részecske mozgisara vonat-
koznak, mig szilardtestfizika dltal vizsgalt rendszerekben
nem egyetlen elektron mozog, hanem rengeteg egymas-
sal kolcsonhat6 elektron kollektiv mozgisa okozza a
transzportjelenségeket, pl. az elektromos vezetést.

Paradox médon éppen ez teszi lehetévé a tovabb-
lépést. A szilardtestfizikanak ugyanis mar évtizedek 6ta
jol bevalt matematikai moédszerei vannak arra, hogyan
vezesse le az egyetlen elektront leir6 Hamilton-opera-
tor alapjan a rendszer makroszkopikusan is észlelhet6
fizikai mennyiségeit — pl. a frekvenciafiiggé elektromos
vezetOképességét, optikai tulajdonsdgait, magneses
szuszceptibilitasiat. E bonyolult szamitasok elsé kozeli-
téseként jol felhaszndlhatdk az egyetlen elektron moz-
gasara vonatkoz6 elmélet eredményei. A témardl sz616
legutdbbi cikkiinkben [10] azt vizsgaltuk, miként jelenik
meg ebben a kozelitésben a rendszer ,ZB-hajlandésaga”
a makroszkopikus transzportegyiitthatokban. Meglep6
modon azt talaltuk, hogy az elektromos vezet6képesség
és az ezzel kapcsolatos topoldgiai jellegli paraméterek
(Berry-gorbiilet, Chern-szam) formuldiban ugyanazok
aZ,, egyiitthatok bukkannak fel, mint az egyetlen elekt-
ron helyoperatorara vonatkoz6 szaimolasokban. Ez arra
a kovetkeztetésre vezet, hogy bar egy-egy elektron ese-
tén a Zitterbewegung észlelése reménytelen, ez a jelen-
ségkor mégis megjelenik a vizsgalt Hamilton-operato-
rokkal leirhaté modellek realis eredetijének kisérletileg
vizsgalhato tulajdonsagaiban.

Mint emlitettiik, egyes modellekben elméleti lehe-
téséget talaltunk a ZB-jelenség elektromos potenciallal
valé vezérlésére. Ez reményt ébreszt arra, hogy e rend-
szerek transzportjellemzd6i finomhangolhaték, manipu-
lalhatok lehetnek. Erre pedig a nanofizika, spintronika
és a rajuk épiil6 majdani technologia kovetkezd fejlédési
fazisaban nagy sziikség lehet.
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Osszefoglalas

A Schrodinger altal felfedezett Zitterbewegung nem a
relativisztikus kvantummechanika furcsasiga, hanem a
tobbkomponensd hullimfiiggvénnyel leirhat6 szabad és
kvaziszabad kvantumrendszerekben fellép6 altalanos
jelenség. Megjelenik a modern sziladtestfizika altal ta-
nulmdanyozott szamos rendszer egyszerf{isitett tobbsavos
modelljében. Bar egyedi részecskéken kozvetleniil nem
tanulmanyozhat6, a ZB jelensége manifesztalodik az
elektromos vezet6képesség és mas ténylegesen mérhet6
fizikai mennyiségek viselkedésében.

Koszonetnyilvanitds

Koszonetet mondunk Széchenyi Gabornak, hogy hozza-
jarult a TDK-dolgozatahoz készitett abrainak ujrakozlé-
séhez.
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Bevezetés

Tom Stoppard ,Rosencrantz és Guildenstern halott”
cimi mive azzal a jelenettel kezd6dik, hogy a két f6sze-
repl6 fej vagy irds jatékot jatszik, Guildenstern folyama-
tosan fejet dob, és Rosencrantz egymas utan nyolcvan-
Otszor elnyeri baratja érmét. Nagyon valdszinitlennek
tlinik egy ilyen sorozat, holott ha a fej és iras dobasanak

Dr. Schranz Agoston a BME Villamosmérnoki
és Informatikai Kar Hal6zati Rendszerek és
Szolgaltatisok Tanszékének egyetemi ad-
junktusa és a HUN-REN-BME Informatikai
Rendszerek Kutatécsoport tudoményos mun-
katdrsa. Kutatdsi teriiletei a kvantumfizikai
alapu, optikai elvii véletlenszam-generdlds
(QRNG), illetve a kvantumalapd kulcs-
‘“ szétosztas (quantum key distribution, QKD).
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valoszinlsége egyenld, akkor ez a sorozat is épp akkora
eséllyel fordul el6, mint barmely masik. Vajon hogyan
lehet eldonteni, hogy egy véletlen sorozat valéban tel-
jesen véletlenszerl (ami nem jelenti azt, hogy a fej és
iras dobdsdnak gyakorisaga egyenl6)? Egydltalan, mi-
kor tekinthet6 egy sorozat véletlennek? Ha véletlen
szamokra van sziikségiink, milyen mddszert érdemes
valasztani annak érdekében, hogy véletlen szamsoro-

Solymos Baldzs a BME Mobil Kommunikaci6é

és Kvantumtechnologidk Laboratériuméanak

munkatdrsa, ahol doktori téméja keretében

L optikai kvantumos véletlenszam-generatorok

-~ eredményeinek utéfeldolgozasaval foglalko-
zott, melynek nyilvanos védésére késziil. A
kvantum-véletlenszaimgeneralason feliil tovab-
bi kutatasi teriilete a jov6beli kvantuminternet
kihivasai.

—
-
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zatot kapjunk? Nem biztos, hogy Guildenstern minden
alkalommal ugyanuigy dobta fel a pénzérmét, ahogy az
sem, hogy valamilyen egyéb kiilsé hatas nem befolya-
solta az érme foldet érését. Ezért a pénzfeldobast nem
fogadhatjuk el megbizhaté médszernek véletlen soroza-
tok eléallitasara.

A technika fejlédésével kinalkozott a lehetSség,
hogy szamitégép allitson el valamilyen algoritmussal
véletlen szamokat. Igen am, de a szamitdgépes algorit-
musok determinisztikusak, azaz ha egy bizonyos kez-
déallapotbdl inditjuk 6ket, akkor mindig ugyanaz lesz
az eredmény (kiilonben a szdmitégép megbizhatatlan
lenne). Ez azonban még nem zarja ki azt, hogy algorit-
mussal j6 min&ség dlvéletlen — tehat determinisztikus,
de statisztikai mutatéit tekintve véletlenszer@ - soroza-
tot allitsunk elS. A kovetkez6 modszer az egyik legegy-
szer(ibb eljaras:

x;=(a %+ ... + arx;_;) modm,

ahol az a, egyiitthatdk relativ primek, melyekre telje-
stl, hogy |a;| < m, a mod m pedig a modul6é miivelet,
azaz az m-mel val6é osztds maradéka. A fenti rekurzi6
szlikségszerlien véges szamu 1épés utan visszatér a ki-
indulasi allapotba. Ezt a lépésszamot a generdtor peri-
6dushosszanak nevezziik, melynek maximalis értéke a
targyalt modszerre 0 = m*'. Ennek eléréséhez m-nek
primszamnak kell lennie, valamint az egyiitthatéknak
ki kell elégiteni néhany tovabbi feltételt.

Az alvéletlen szamsorozatok mindségének tesztelé-
sére szamos modszert kidolgoztak. Az egyenletességet
példaul az an. diszkrepanciaval lehet jellemezni: ez azt
fejezi ki, hogy a [0, 1) tartomanyon generalt véletlen
szamokbdl alkotott N dimenzids vektorok az egység-
oldald N dimenziés hiperkockat mennyire egyenlete-
sen toltik ki. Az egyenletesség mellett fontos jellemz6
még a szamsorozaton beliil fellép6 hosszua tavu korre-
laciok megjelenése, illetve ezek hidnya. Szamos sta-

Mdrton Botond Ldszlé a BME Hélozati
Rendszerek és Szolgéltatdsok Tanszékének
doktorandusza a Mobil Kommunikicié és
Kvantumtechnol6giak Laboratériumban. Fé
kutatési tertiletei a kvantumos kulcsszétosz-
tas és a kvantumkommunikacids protokollo-
kat hasznalé héldzatok.

Gerhdtné Dr. Udvary Eszter a BME Villamos-
mérnoki és Informatikai Kar docense, a Mo-
bil Kommunikécié és Kvantumtechnol6gidk
Laboratériuménak tagja. A klasszikus optikai
tavkozlés, elsGsorban az optikai hozzéaférési
hélézatok vizsgalata utin kezdett a kvantum-
kommunikacié jelenségeivel foglalkozni. A
QRNG mellett f§ kutatasi teriilete a klasszi-
kus és kvantumkommunikécids rendszerek
egyiittmikodése.
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tisztikus tesztcsomagot dolgoztak ki a véletlen szam-
sorozatok mindsitésére, ilyen példaul a DIEHARD [1],
vagy az amerikai NIST SP 800-22 [2]. Ezen tulmend-
en vannak hivatalos tanusitvanyt kibocsaté cégek is.
A tanusitvanyokra sziikksége van az ipar kiilonb6z6
szerepl6inek, példaul a jatékautomatikat gyarté cé-
geknek.

Az dlvéletlen szamsorok jol hasznalhaték olyan szi-
mulacidkban, ahol véletlen bemen6 adatokra van sziik-
ség. Ezekre a legismertebb példa a kiilonféle Monte
Carlo-eljarasok halmaza. Felhasznalds szempontjabdl
nagy elénye a determinisztikus algoritmussal el6alli-
tott szamsoroknak, hogy veliik egy futtatas tetszdleges
szamban, ugyanazokkal a tesztadatokkal megismétel-
heté6.

A szamos el6nyos tulajdonsig mellett van egy nagy
hatranya az 1950-1970-es években kifejlesztett deter-
minisztikus algoritmusoknak: az eléallitott szamsoro-
kat mintavételezve elvileg visszafejthetd, hogy milyen
kezdd6allapotbdl indultak, eziltal pedig meghatiroz-
hatéak a tovabbi elemek is. Kritikus kriptografiai al-
kalmazasokban ez megengedhetetlen biztonsagi rést
jelent, ezért ilyen helyzetekben modositott vagy mas
elven mikoédoé algoritmusokra van sziikség. Az egyik
lehetséges irdny az Gn. kriptografiailag biztonsdgos al-
véletlenszam-generatoroké: ezek olyan algoritmusokon
alapulnak, melyek lehetetlenné teszik, hogy klasszikus
szamitégéppel megjosoljak a kovetkezd biteket, még
ugy is, hogy az 6sszes korabbi bitet ismerik. Ez azt je-
lenti, hogy a bitek szamanak ndovekedésével polinomi-
alisnal magasabb rendben (példaul exponencialisan) n6
az idGsziikséglet a kovetkez6 alvéletlen bit meghataro-
zasahoz. Ez a megoldas azon alapul, hogy bizonyitottan
(vagy legalabbis jol megalapozott sejtés alapjan) nem
lehetséges hatékonyabb algoritmust taldlni a véletlen
szamsorozat visszafejtésére. Azonban a polinomialis-
rendi biztonsag nem garantalja onmagaban, hogy ajové
kvantumszamitégépeivel nem lehet megjésolni egy
véletlen bitsorozat részleges ismeretével a kovetkezd
biteket. Az alvéletlenszam-generatorok kriptografiai
biztonsagossaga tovabb novelhetd, ha a kiindulasi érté-
keket gyakran valtogatjak, s az egy fizikai véletlenszam-
generatorbdl szdrmazik [4]. Igy keriilnek el6térbe a fizi-
kai véletlenszam-generatorok.

A fizikai véletlenszam-generatorok mikodési elve
azonalapul, hogy atermészetben szamos folyamatlétezik,
melynek kimenetelét nem tudjuk pontosan megjoésolni.

Dr. Kis Zsolt a HUN-REN Wigner Fizikai
Kutatokozpont tudoményos fémunkatar-
sa, valamint a BME Villamosmérnoki és
Informatikai Kar, Mobil Kommunikacio és
Kvantumtechnolégiadk  Laboratériumanak
munkatdrsa. F6 kutatasi teriiletei az elméleti
és kisérleti kvantumoptika, ezen belill nem-
linedris optika, koherens kvantumkontroll,
optikai nanostruktirdk. Egylittm{ikodés
keretében vezeti a BME-n foly6 optikai-
szal-alapi QKD eszkozok fejlesztését.
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Makroszkopikus rendszerek esetében a jelenségek alta-
laban a klasszikus fizika keretein beliil értelmezhetdk.
Sokrészecskés rendszereket a statisztikus fizika mod-
szereivel jellemziink, emiatt szamos mérhet6 tulajdon-
sag véletlen eloszlast mutat. A Lavarand vagy Wall of
Entropy [3] egy lavalampakkal boritott fal, a lavalam-
pakban megjelend véletlen mintazatbdl hatarozzak meg
az alvéletlenszam-generator kezd$ paramétereit. Maso-
dik példank a sorétzaj, melyet megfigyeltek elektromos
aramban és nagyon gyenge fény esetében is. Az utéb-
birél késébb részletesen irunk. Ennek a jelenségnek a
hatterében az all, hogy diszkrét részecskék véletlen id6-
kozokkel kovetik egymast, és alacsony fluxus esetén ez
szamottevo ingadozast eredményez az idGegység alatt
detektilhaté részecskeszamban, azaz az elektromos
aramerdsségben vagy fényintenzitasban. Utols6 példank
ebben a szakaszban a modern személyi szamitogépek-
ben implementalt hardveres véletlenszam-generator:
a Linux operacios rendszer /dev/random fijljat olvasva
egy olyan véletlen bajtsorozatot kapunk, melyet az ope-
racios rendszer folyamatosan general a gépbe beépitett
hardvereszk6z6k id6ben valtozé paramétereibdl.

1. dbra. Az ID Quantique cég Quantis csipjei. A négyzetracson a kockdk
élei korilbeliill 5 mm hosszaak (Forrds: ID Quantique)

Mikroszkopikus méretekben méar nem a klasszikus
mechanika, elektrodinamika stb. térvényei érvényesiil-
nek, hanem a kvantummechanikdéi. Ebben kdzponti
szerepet jatszik a véletlen. A kvantumrendszerek dina-
mikdjat leiré Schrodinger-egyenlet valdszintiségi amp-
litadok idofejlédését hatirozza meg. A kvantumrend-
szeren mérést végezve hatarozott értéket kapunk, de a
kisérletet Gjra elvégezve mar mas eredmény johet ki. A
lehetséges eredmények valdszinliségi eloszlast mutat-
nak; ez egy elemi tulajdonsag, a kvantumos rendszerek
sajatossaga. Ezt kihaszndlva lehet kriptografiailag biz-
tonsagos véletlenszam-generatorokat tervezni és meg-
valdsitani. Ezek a kvantumos véletlenszam-generatorok
(quantum random number generators, QRNG), melyek
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jelen tuddsunk alapjan a kriptografiailag legbiztonsago-
sabb véletlenségforrasok.

A mérendé kvantumrendszer sokféle lehet, az elsé
QRNG-k példaul radioaktivitas detektalasan alapultak,
madra azonban gyakorlatilag egyeduralkodénak tekint-
het6k az optikai elvi kvantumos véletlenszam-gene-
ratorok [4]. Az ID Quantique az egyik piacvezetd cég
a QRNG-gyartasban: optikai elvii QRNG-rendszeriiket
olyan kis méreti csipbe sikeriilt besiriteni, mely egy
okostelefonba is beépithet6 [5] (1. dbra). Ez kosz6nhet6
egyrészt annak, hogy a fényforrasok stabilan, idében
fenntarthatéan bocsatjak ki fotonok sokasagat, tehat
nagy sebességii véletlenszam-generalast tesznek lehe-
t6vé, masrészt pedig az optikai tavkozlés széles kord
elterjedésének, mely elérhet6vé tett relative olcso, tech-
nikailag fejlett fényforrasokat, detektorokat és egyéb
passziv és aktiv optikai eszkozoket. A fénynek tobbféle
mérhetd tulajdonsaga van: 1éteznek nyalabosztés, fazis-
zajt méro, detektalt fotonokat szamlalo, erdsitett spon-
tan emissziot hasznalé stb. QRNG-megoldasok.

Az algoritmusalapt, klasszikus fizikai és kvan-
tummechanikai elven mitik6d6é véletlenszam-genera-
torok Osszehasonlitasa szempontjabol lényeges para-
méter még a véletlen bitsorozat generalasi sebessége.
Altaldnossiagban elmondhaté, hogy az algoritmikus
véletlenszam-generatorok a leggyorsabbak, a mai kor-
szerd szamitégépeken a Gb/s rata atlagosnak nevezhetd.
A klasszikus fizikai és kvantummechanikai elven miiko-
d6k lassabbak. A mar korabban emlitett ID Quantique
Quantis termékcsaladjanak tagjai 100 kb/s és néhany tiz
Mb/s kozott mozgd sebességgel rendelkeznek. Az ala-
csonyabb rata érthetd, hiszen nemcsak a fizikai folya-
mat, hanem a rendelkezésre all6 elektronikai eszkozok
sebessége is korlatozza az id6egység alatt generalhaté
bitek szamat. Ugyanakkor folyamatosan jelennek meg
Gjabb kvantummechanikai véletlenszamgenerator-el-
rendezésrol sz016 publikicidk, melyek tobb Gb/s vélet-
lenbit-ratira képesek.

Sajat eredmények

A szamos megvalositasi lehetdséget figyelembe véve
felmeriil a kérdés: mi alapjan dontsiink egyik vagy ma-
sik fizikai architektira mellett? Lehetséges valamely
teljesitménymetrikara maximalizalni, példaul az elér-
het6é bitgeneralasi ratdra. Azonban a kutatas-fejlesz-
tés szempontjabol elényds olyan megoldast keresni,
amely, bar nem feltétleniil veszi fel a versenyt a legjobb
teljesitményli generatorokkal, mikodését tekintve
jol modellezhetd, a folyamat klasszikus és kvantumos
komponensei egyszerlien szétvalaszthatéak,' ezaltal a
véletlenség kvantumfizikai eredete jol leirhat6 és nyo-
mon kovethetd.

' Itt ,klasszikus” alatt olyan jelenségeket értiink, amelyeknél a kvan-
tumos jelleg és miikodés a részt vevd részecskék mennyiségébdl
fakadéan mdir nehezen elemezhetd, mint példaul az elektromos el-
lenéllasok termikus zaja.
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Az utébbi valasztasra szolgalnak példaként azok az
eszkozok, melyek detektdljak egy fényforras dltal ki-
bocsatott fotonokat, majd a fotondetekcidk kozt eltelt
id6kozok véletlenségét haszndljak a véletlenszam-ge-
neralds alapjaul. Ezen generatorokat a szakirodalom
beérkezési idén alapuld (time-of-arrival) QRNG-knek
hivja. A leggyakrabban alkalmazott fényforrasok fél-
vezet6 lézerek, azaz lézerdiédak, mert a kibocsatott
koherens fény jol karakterizalhato, valamint j6 koze-
litéssel Poisson-fotonstatisztikaju. Mivel félvezetdk,
gyartasuk kiforrott, kis méretiik és az optikai tavkozlés-
ben betoltott szerepik, elterjedtségiik révén konnyen
és viszonylag olcson hozzaférhetéek. A fényforrasbol
szarmazé fotonokat 4altalaban egyfoton-detektorral
(példaul fotoelektron-sokszorozéval, egyfoton-lavina-
diédaval vagy szupravezeté nanohuzalos detektorral)
lehet észlelni. A detektorok hatékonysaga elérheti a
80-90%-ot, ezért a fényt rendszerint erésen csillapitani
sziikséges — a telit6dést elkeriilendd és a detektor védel-
me érdekében.

Nem sziikségszerd, hogy a véletlen id6kozonként
érkezd fotonokat lézer allitsa el6, azok termikus fény-
forrasbol is szarmazhatnak. A termikus fényforrasok
fotonstatisztikdja a koherens fénnyel szemben szuper-
Poisson-jellegii, mely azt jelenti, hogy gyakran egyszer-
re tobb foton 1ép ki az eszkdzbdl - ez a csomodsodis
(bunching) jelensége. Azonban a csillapitok okozta
Bernoulli-torléseknek,? illetve a detektorrendszer holt-
idejének koszonhetGen a mért fotoelektron-statisztika
a gyakorlatban jol kozeliti a Poisson-eloszlast. Holtid6
alatt azt a rovid id6tartamot értjiik, amely minden de-
tektalds utdn fellép, és az ezen idészakon beliil érkezé
tovabbi fotonokra a detektor érzéketlen. Belathaté te-
hat, hogy amennyiben kell6en nagy csillapitast iktatunk
a fényforras és az érzékel6 kozé, félvezetd lézerek he-
lyett akar fénykibocsaté diddakat, LED-eket is alkal-
mazhatunk a véletlenszam-generator fotonforrasaként.

Képzeljiik el azt, hogy az igy megalkotott QRNG
idealisan mikddik, a fényforrds Poisson-fotonstatiszti-
kaval bocsat ki fotonokat. Meg lehet mutatni, hogy ek-
kor a két egymast koveto fotondetektdlas kozott eltelt T
véletlen id6 exponencialis eloszlast kovet:

Pr(T<t)=1-e™*,

ahol A a detektorra érkezé fotonok atlagos rataja [1/s]-
ban mérve, mely tartalmazza a csillapitasbdl és a detek-
tor nem egységnyi hatasfokabdl szarmazoé veszteséget.

A fotondetektalasok id6kiilonbségeként kapott szam-
értékek ugyan véletlenszertiek és fiiggetlenek, de kozel
sem egyenletes eloszlasiak, marpedig kriptografiai te-
riilleten ez az elvaras, ugyanis az egyenletes eloszlasnak
maximalis az entropidja — a meglepetéstartalma -, ez-
altal ennek a kimenetelét a legnehezebb megjosolni.
Tovabba, mivel informatikai és tavkozlési egységeink bi-

> A csillapitast a csillapité telitédése alatt modellezhetjiitk gy, mint az
egyes fotonok egymastdl fiiggetlen torlését vagy megtartasat a folya-
matban p, ill. 1 - p valésziniiséggel, egy Bernoulli-eloszlés szerint.
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naris szamrendszerben dolgoznak, ugyancsak célszerd,
ha a véletlenszam-generatorunk egyenletes eloszlasu
bitsorozatokat bocsat ki. Az entrdpia informacidéelméleti
definici6ja Claude Shannontdl szarmazik:

H= _prlogZPx >
xeX
ahol X a szimbo6lumok halmaza (pl. {0, 1}, de lehet hosz-
szabb bitsorozat is), p, pedig egy adott szimbo6lum el6-
fordulasi valoszintisége. Véletlenszdm-generalds esetén
altaldban az ennél szigortibb

H,=-maxlog,p, <H
xeX

min-entrépiat hasznaljuk az eloszlas karakterizaldsara.
A két entrdpia akkor vesz fel maximalis (és egyenld) ér-
téket, ha valemennyi szimbo6lum azonos valdsziniségu.
Ez altaldban nem teljesiil, ezért a nyers adatsorbdl un.
extraktor — egy matematikai transzformacié - alkalma-
zasaval nyeriink véletlen bitsorozatot.

Visszatérve az altalunk megvalositott kvantumalapt
véletlenszam-generatorhoz, talaljunk hat egy moédszert,
ami a mért idintervallumokhoz egyenletes eloszlasu bi-
teket rendel! Stipéevié és Rogina 2007-es cikkiikben [6]
irtak le egy metddust, melynek a lényege a kovetkezo:
mérjiink meg két egymast kovetd, fotonok beérkezése
kozti idGintervallumot, majd hasonlitsuk 6ket 6ssze. Ha
az els6t mértiik hosszabbnak, rendeljiink a kimenethez
egy ,0” bitet, ha a masodikat, akkor pedig egy ,17-est.
Amennyiben a lézerfény teljesitménye, ezaltal a beérke-
76 fotonrata idében allanddnak tekinthetd, akkor a két
id6tartamot leir6 valdsziniiségi valtozok fliggetlenek és
azonos eloszlasuak; ebbdl fakadban pedig az 6sszehason-
litasbol szarmaz6 kiilonbségi valtozé szimmetrikus lesz,
tehat a nullasok és egyesek valdszinlisége megegyezik.
Le kell kezelniink azonban még az utolsé fennmaradé
lehet6séget is: ha a két idStartamot egyforma hosszi-
nak mérjiikk - barmilyen kis valoszinliségii legyen is ez
-, akkor a szimmetria megdrzése érdekében nem ren-
deliink bitet a kimenethez. Ez természetesen csokkenti
a hatékonysagunkat, azonban az igy kapott médszer ro-
busztus, jol ellenall a bitgeneralas idejéhez képest joval
nagyobb idéskdlan torténé homérsékleti teljesitmény-
ingadozdsoknak.

Ez volt a legels6é QRNG alapelve, melyet megvalé-
sitottunk a BME Haldzati Rendszerek és Szolgaltatasok
Tanszékének Mobil Kommunikacié és Kvantumtech-
nologidk Laboratériuméban, s az eszk6z a mai na-
pig tizemel. Az eszkoz fényképe a 2. dbrdn lathat6. A
QRNG-k tovabbi kutatdsaban két iranyba indultunk el.
Egyrészt finomitottuk a mogottes fizikai rendszer le-
ir6 modelljét, amellyel olyan problémakra is megoldast
talaltunk, amelyek nagyobb fotonritik esetén mar a
statisztikai tesztek dltal kimutathatéan eltorzitottdk az
idealis véletlenszeriiségre jellemz6 statisztikai tulaj-
donsagokat. Masrészt pedig Gjabb matematikai moéd-
szereket kezdtiink kidolgozni annak érdekében, hogy
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2. dbra. A véletlenszam-generatorunk fényképe. 1: 1ézerdidda; 2: egymddusu optikai szal; 3: szabalyozhat6 opti-
kai csillapitok; 4: csillapité kontroller; 5: optikai nyalabosztd; 6: linearis fotodetektor; 7: fotoelektron-sokszorozé

a bitgeneralas hatdsfoka (az egy mérési eredményhez
rendelt bitek atlagos szdma), és ezaltal remélhetbleg
a sebesség is megnovekedjen az alapotlethez képest.
Mindezt igyekeztiink ugy kivitelezni, hogy az eredeti
fizikai architektirat ne kelljen nagymértékben meg-
valtoztatni hozza - legfeljebb stabilabb fényteljesit-
mény-kontrollt épitettiink be.?

Az extraktorok implementaldsan tal pontosabb ma-
tematikai modellezést tiztiink ki célul, mivel az imént
bemutatott egyszerli modell szamos fizikai jelenséget
elhanyagol. Ilyen példaul az egyfotondetektorok sotét-
zaja (a beérkez6 fotonok hidnyaban megjelend kimene-
ti jel), vagy az id6mérés véges felbontdsa, pontossaga.
Az id6bélyegz6 eszkoz tipusatdl fiiggben ez a felbontas
piko-nanoszekundumos nagysagrendi. A véges fel-
bontas korlatozza az elérhet6 bitrata nagysagat. Még
nagyobb problémat jelent, hogy attdl fiiggéen, hogy
a mérési orajel ciklusan beliil mikor észleltiik a fotont,
két ugyanolyan valds hosszt id6tartamot digitalizalva
kaphatunk két eltér6 értéket is. Bemutattuk és szam-
szer(sitettiik, hogy ez korrelaciét okoz a mért idGtar-
tamok, ezaltal a generalt bitek kozott is [7]; majd meg-
alkottunk egy algoritmust, mely egyszerre sziinteti meg
ezt a nem idealis mikodést, valamint kezeli a véletlen-
szer( holtid6-ingadozas problémait [8].

3 A kovetkez6 bekezdésben hivatkozott publikdcidink mindegyike

mébe.

Tovabbi célunk még a bitgenerdlds hatasfokanak és
sebességének novelése. A korabban bemutatott egyszeri
extraktor ugyan jol miikodik, viszont kicsi a hatékony-
sdga, mivel mérésparonként mindossze egy bit keletke-
zik, holott a fotonok detektaldsanak id6kiilonbsége egy
folytonos mennyiség, mely a detektalas véges id6felbon-
tasa miatt a szamitégépben mar diszkrét adatokra kép-
z6dik le. Ehhez egyrészt bemutattuk, hogy a kinyerhet6
entropia mértéke jelentésen nagyobb, mint az alapméd-
szer fél bit / észlelt esemény értéke, és utédfeldolgozasi
modszereket ajanlottunk arra, hogy ezt kihasznalva is
egyenletes eloszlast maradjon a bitsorozatunk [9]. Ma-
sik médszeriink pedig azaltal novelte a hatékonyséagot,
hogy nem vetette el az egyenlének mért idéparokat
sem, hanem egymast kévet6 mérések csoportositisa-
val hozott létre tobb bites, egyenletes eloszlast kovetd
blokkokat. Az id6kiilonbségek statisztikus eloszlasabol
meg lehet hatdrozni a min-entrépiat, melynek értéke
eseményenként 9,66 bit. Az utéfeldolgozas soran ez az
érték valamelyest csokken 9,14 értékre, a detektalas
maximadlis ratija pedig 6tmillié foton masodpercen-
ként; tehat a késziilékiink véletlenbit-generalasi rataja-
nak fels6 hatara 45 Mb/s, melynek eléréséhez célhard-
verre lenne sziikkség. A rendelkezésre all6 személyi
szamitogéppel ennél szerényebb, néhany Mb/s értéket
tudunk megvalésitani.

Oktatasi és demonstraciés célokbol létrehoztunk
egy weboldalt, amely a http://qrng.hit.bme.hu cimen
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3. dbra. A m értékének Monte Carlo-mddszeres becslése 10000, 25000 és 50 000 véletleniil generalt pont alap-
jan. A pontszam névekedése nem garantilja a becslés pontossigdnak javuldsat minden egyes futds esetén!

érhetd el, egyeldre kizarolag az egyetem bels6 halézata-
rol. Az oldalt kiszolgalo webszervert bekapcsolt allapo-
tdban a QRNG latja el véletlen bitekkel, egyéb esetben
viszont egy j6 mindségil alvéletlen-generatorbdl nyeri
ki az értékeket. Az oldal harom funkciot lat el. Egyrészt
referenciaként szolgdl, roviden bemutatja kutatdcso-
portunk QRNG-vel kapcsolatos munkdjat, beleértve a
weblapot kiszolgalé generator miikodésének leirasat
és a kapcsol6dé tudomanyos munkaink listdjat is. Ma-
sodsorban lehet&séget biztosit arra is, hogy a felhaszna-
16k véletlen biteket (vagy ezekbdl formalt hexadecimalis
értékeket) igényeljenek, akar egyszert, szoveges forma-
tumban, akar egy alkalmazasprogramozasi interfészen
(API-n) keresztiil. A harmadik funkcié pedig az, hogy
vizualizaciés moédszerek és szérakoztaté alkalmazasok
segitségével kozelebb hozzuk a véletlenszerliség vila-
ganak megértését az érdekl6do laborlatogatok szamara
- példaul a Kutatok Ejszakaja keretein beliil ebbe is be-
pillantast nyerhetnek a programunk résztvevdi.

Illusztracioképpen a m értékének becslését mutatjuk
be Monte Carlo-szimulacidval: vegyiink fel egy egysé-
goldald négyzetet, majd ezen beliil egy olyan, 0,5 sugard
kort, melynek a négyszog minden oldala az érint6je. Ge-
neraljunk ezutan egyenletes eloszlassal N, darab pon-
tot a négyzeten belill, majd szamoljuk meg, hiany pont
esett ezek kozil a korbe (Ny;,). Ha a véletlen szdmok
egyenletes eloszlasuak voltak, igaz lesz, hogy a korbe,
illetve négyzetbe esé pontok szama a sikidomok teriile-
tének aranyahoz tart a pontok szamanak novelésével, igy
a becsiilt értékiink

A
T=4- kor :4£z4

négyzet 4

. N kor
N Ossz

A mddszert 10, 25 és 50 ezer generalt pont segitsé-
gével a 3. dbra szemlélteti. Természetesen minél tobb
pontot hasznalunk, viarhatéan anndl pontosabb lesz a
becslésiink.

Osszefoglalasként elmondhatjuk, hogy a kvantum-
alapt véletlenszam-generalds egy aktivan kutatott, sok
Uj eredménnyel kecsegtetd teriilet, melyet egyre boviilé
csoportunk is tobb iranybdl vizsgal, valamint népsze-
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risit. A QRNG-kkel el6allitott bitsorozatok hozzasegit-
hetnek minket egy olyan vilaghoz, ahol a titkositandé
informaciéink védettnek tekinthetéek akar kvantum-
szamitégépes timadasokkal szemben is.
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FORDULAT A KVANTUMHALOZATOKBAN:
AMERESEK SZEREPE ATALAKUL

ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona

I. Szokasos Bell-nemlokalitas

Egy kicsit unalmas lenne egy valédi Schrodinger-macs-
kas kisérlet. Képzeljiik el, hogy brit tudésok nagy fel-
hajtas mellett bejelentik, hogy tobb évtizednyi miiszaki
attorésnek hala készen allnak a vilag szeme lattara vég-
rehajtani az igazi Schrédinger-macskas kisérletet. El6
kozonség és YouTube-kozvetités kiséretében, tobb millié
szempar lattara el6készitik a dobozt, a méregiivegcsét, a
kalapacsot, a radioaktiv atomot, ami el6idézi majd a szu-
perpozicidt, no meg a macskat. Aztan elvégzik a kisérle-
tet, kinyitjak a dobozt, és lam-lam... — ott {il egy Ossze-
zavarodott, de é16 macska.

Ez nem meglepd latvany. Akar igaz volt a macska
kvantumos szuperpozicidja, akar nem, ezt fogjuk latni a
kisérlet végén: vagy él a macska, vagy meghalt. Azaz nem
tudunk meg semmit a mogottes fizikarol ettdl a kisérlet-
t6l. Ugye, ha nincs olyan, hogy é16 és holt allapotok szu-
perpozicidja, akkor mar a doboz kinyitasa el6tt eldélt,
hogy él-e vagy hal a macska. Ha pedig van, akkor ez csak
abban a pillanatban ,dé6l el”, amikor kinyitjuk a dobozt.

Sokkal izgalmasabb az, amire John Bell jott ra 1964-
ben: van olyan kisérlet, amit ha elvégziink, akkor mast
fogunk latni, ha létezik szuperpozici6, mint ha nem léte-
zik. Bell az 1935-06s kisérteties tavolhatasos gondolatokra
reflektalva jutott egy olyan gondolatkisérletre, ami a lo-
kalis hatdsok hagyomanyos tapasztalatinak mond ellent
- ezért hivjuk ma ezt a jelenséget Bell-nemlokalitdsnak.
A kisérlethez sziikséges koncepcionalis és technikai ko-
riilmények megvaldsitasaért 2022-ben meg is kapta a
Nobel-dijat Alain Aspect, John F. Clauser és Anton Zei-
linger [1].

Bell javaslatat egy egyszerd 0sszedlt6z0s jatékkal le-
het szemléltetni. Tegyiik fel, hogy Aliz és Béla tavoli or-
szagokban laknak, de irt6 szerelmesek egymasba. Ezért
kitalaljak, hogy néha 0ssze szeretnének 6lt6zni, de csakis
akkor, ha mindketten olyan kedviikben vannak aznap;
ha mar csak egyikiik is nem 6ssze6lt6z6s hangulataban
kelt, akkor az a cél, hogy mas szinbe 6lt6zzenek (1. dbra).

Krivdchy Tamds doktori tanulmanyait Genf-
ben és Bécsben végezte, jelenleg posztdoktori
kutaté a barcelonai ICFO kutatéintézetben,
2025 novemberétdl pedig a ziirichi ETH-n.
Kutatdsa a kvantumos korrelacidk, halézatok
és gépi tanulds koré csoportosul. Emellett
ismeretterjesztéssel is foglalkozik a Kvantum-
cirkalé blogban.
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kék/piros kék/piros

1. dbra. Aliz (A) és Béla (B) minden reggel eldontik, hogy 6ssze sze-
retnének-e 6ltozni (ne/légyszi) és aztan, hogy milyen ruhat vesznek
fel (kék/piros). Ha megmérik a koztik elosztott Gsszefonddott ré-
szecskepart, akkor jobban teljesithetnek

Kicsit formalisabban, minden reggel pontban ugyanak-
kor kelnek fel, és a felkelés pillanataban 50-50% eséllyel
mindketten magukban eldontik, hogy van-e kedviik 6sz-
szedltozni a masikkal aznap. Aztdn gyorsan feloltoznek
vagy kék, vagy piros ruhaba. Utana reggeli kozben video-
hivas keretében megbeszélik, hogy kinek milyen kedve
volt, és sikeriilt-e 6sszeodltozni. Klasszikusan (azaz kvan-
tumos tritkkok nélkiil) akdrmilyen stratégiat beszélnek
meg, ha tényleg minden reggel véletlenszertien dontik
el, hogy van-e kedviik 0sszedltozni (4gy, hogy a masik
ne tudja meg dontésiiket, miel6tt feloltozik!), akkor leg-
feljebb 75%-ban sikeriilhet a céljuk. Egy stratégia erre
szimplan az, hogy Aliz minden nap kéket htz, Béla meg
pirosat — igy csak akkor nem sikeriil a céljuk, ha mind-
ketten ssze szerettek volna 6lt6zni, ami pont 25% esély-
lyel torténik meg.

Fantasztikus médon, ha Aliznak és Bélanak hozzafé-
résiik van egy kvantumos forrashoz, ami 6sszefonédott
részecskeparokat oszt szét koztiikk (minden reggel egy
part), akkor a megfelel6 mérésekkel ezt a jatékot kb. 85%
eséllyel tudjak megnyerni. Mégpedig tegyiik fel, hogy
polarizacidéjukban 6sszefonddott fotonparokat oszt szét
koztiik a kvantumos forras, azaz (1/42)([VV) + |FF)),
ahol V a vizszintes polarizacioju allapot, F meg a fiigg-
leges. Aliz analalévé foton polarizacidjat F iranyban méri
meg, ha van kedve 0ssze6ltozni és 45 fokkal elforgatott
iranyban, ha nincs. Béla pedig ezekhez képest atlosan,
22,5 fokos vagy 67,5 fokos iranyba allitja be polarizacids
szlir6jét (lasd pl. [2]). A kimenetelek fiiggvényében (ilyen
iranyba volt-e a polarizacié vagy sem) vagy kékbe 0ltoz-
nek, vagy pirosba. A megfelel$ valasztasok esetén min-
den bemenetelre éppen cos?(22,5°) = 85% esélyiik van jol
donteni Ggy, hogy kozben nem is ismerték meg, hogy a
masik személynek milyen kedve volt ébredéskor.

Ezt a jatékot el lehet jatszani mai kisérleti berende-
zésekkel, és ha sok kor utan a korok haromnegyedénél
valoban jelentGsen tobbszor nyernek a szerelmesek,
akkor nem csupan valami kvantumos folényt tudnak
felmutatni, hanem be is bizonyitjdk, hogy a mérések ki-
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menetelei véletlenszeriiek. Miért? Mert ha nem lennének
véletlenszerliek, akkor mar a mérés el6tt le lehetett vol-
na irni a kimenetet egy darab papirra (lehet, hogy Aliz
és Béla nem tudnanak errdl a papirrél, de le lehetne irni
valahova egy titkos papirra). Viszont ha mindkét kime-
netet le lehetett volna irni egy-egy darab papirra, akkor
tulajdonképp nem is lett volna sziikség a kvantumosan
osszefonddott kisérleti berendezésre, a két papirfecni
azt teljesen helyettesithetné. Viszont ha papirfecnikkel
probaljuk megnyerni a jatékot, akkor klasszikus straté-
giakat tudunk csak végrehajtani - azaz maximum 75%
eséllyel nyerhetnénk!

Ennek a kovetkezményei elképesztéen messzeme-
néek. Egyrészt, ha Aliznak és Bélanak tényleg van sza-
bad akaratuk, és 0sszedltozési kedviiket tényleg minden
reggel egymastol fiiggetleniil dontik el, akkor tudnak
valodi véletlen szamokat generalni. Rdadasul a véletlen
szamok értéke akkor dél el, amikor megmérik a kvantu-
mos részecskéjiiket. Viszont tavoli orszagokban laknak,
egy id6ben mérnek, és mérési eredményeik konziszten-
sek egymassal, ezért valahogy nemlokdlisan d6élnek el
az eredmények. S6t, mivel nem voltak elére eldontve az
eredmények, senki sem tudhat réluk. Akkor és ott jottek
csak létre a szamok, amikor megmérték azokat - csak
6k tudnak réluk. Azaz ezek a korrelalt mérési eredmé-
nyek titkosak, igy tokéletes titkositasra is haszndlhat6ak.
Mindehhez pedig csupan annyi kellett, hogy feljegyez-
z€k a dontéseket és ruhaszineket, és konstataljak, hogy
jelentésen tobb mint 75% eséllyel nyernek - azaz nem is
kellett jol ismerniiik a kisérleti berendezés részleteit vagy
fizikajat, igymond miszertdl fiiggetleniil tudjak a vélet-
lenszertséget hitelesiteni.

Néhany fontos tulajdonsaga a Bell-nemlokalitasnak:

o Csak akkor lehet kvantumos el6ny, ha mindkét fél-
nek a sajat két mérése nem kommutald, azaz nem fel-
cserélhetd. Ugye, ha megmérjiik egy foton polariza-
cidjat a vizszintes-fiiggleges irany mentén, akkor azzal
bele is kényszeritjiik a kapott eredménybe. Ha meg-
mérnénk utina atlds irany mentén, akkor a kapott ér-
tékek eloszlasa mas lehet, mint ha egybdl atlés irany
mentén mértiink volna. Matematikailag Mé M,y =
Mgy M., ezek Aliz a kimenetelének mérési projek-
torai.

o Véletlenszeriiséget csak akkor tudunk bizonyitani a
kimenetekben, ha van valamilyen bemeneti véletlen-
szeriség is (hogy van kedv vagy nincs kedv az 0sz-
szeoltozéshez). Ha nem lenne véletlenszer® valasztas,
akkor mindent szimulalni lehetne klasszikusan és Gjra
papircetlikkel elkiildeni a feleknek.

II. Hirman parban

Természetes kérdés, hogy mi van, ha harman, vagy tob-
ben vannak. Lehetséges ebben a helyzetben valami er6-
sebb korrelaciot létrehozni, mint csak paronként eljat-
szani a Bell-jatékot [5]? Ennek tobbféle valtozata is lehet,
példaul, hogy akarhanyan vannak is, egy kozos kvantu-
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mos forrastol kapnak részecskéket - ez viszonylag koz-
vetlen altalanositdshoz vezet. De tekintve, hogy techni-
kailag sokkal egyszerlibb kétrészes Osszefonddast
létrehozni, mint sokrészeset, azt is meg lehet vizsgalni,
hogy mi van, ha csak pdronként vannak Osszekotve
kvantumos forrasokkal a résztvevok, mint a 2. dbrdban.
Mar igy tobbre vagyunk képesek, mint a sztenderd
Bell-kisérletben?

a) @‘AG b)

2. dbra. (a) A hiromszoghdlézat, amelyben harom résztvevd (A, B, C)
paronként van Osszekotve egy-egy klasszikus vagy kvantumos kétré-
szecskeforrassal (a, B, y). Minden korben feldolgozzék a forrasbol ka-
pott jeleket, és kijelentik az egybites végeredményiiket (4, b, ¢). (b) A
kvantumos javaslat, amelyben a forrdsok egy-egy fotont a jobbra és balra
kiildés szuperpozici6jiban allitanak eld, azaz y* = (1/42) (|01) + |10))
[3], vagy két fotonnal ugyanezt [4]. A résztvevik a beérkezd fotonokat
u* = 0,5 ateresztésli nyaldboszton valé interferdlas utin mérik meg

Igen. Ha van harom résztvevd, A, B, C, akik paron-
ként osztanak meg egy eréforrast, akkor 6k egy ugy-
nevezett haromszoghdlézatot alkotnak. Egy ilyen ha-
l6zatban a résztvevdk ugy is tudnak a hagyomanyosnal
er6sebb korrelaciékat 1étrehozni kvantumos forrasok-
kal, ha mindig csak ugyanazt a mérést végzik el. Azaz itt
minden korben ugyanazt a mérést hajtjak végre, nincsen
mérési bemenet, mérési valasztis. Ez azért kilonos,
mert a hagyomanyos Bell-nemlokalitas esetében a klasz-
szikusndl erésebb korrelaciok sziikséges feltétele, hogy
résztvevonként legaldbb kétféle mérés legyen, amelyek
nem kommutdlnak. De itt elég egyfajta mérés. Matema-
tikailag ezzel az egyfajta méréssel a harom résztvevo a
kovetkezd eloszlasbol tud mintavételezni:

pa,b,¢) =Tr(p,®ps; @ p,- M4 M} ® M), (1)

ahol p, jelzi az a forras altal kibocsatott allapotot, M4
pedig Aliz a kimenetelének mérési operatorat (projek-
torat), és hasonldan a tobbieknek. Ezzel szemben klasz-
szikus forrasokat (rejtett valtozdkat) ugy lehet model-
lezni, hogy minden korben egy tetsz6leges valds szamot
kiildenek a két érintett félhez, ugyanis ebbe tetszbleges
informaciét belekédolhatnak. Igy a kévetkezd eloszlas-
bol lehet klasszikusan mintavételezni:

p(a.b,c)= [d@dpd7P,(al B.7)Ps(b| 7. @)P:(c] & )
PP (PP, (P),

ahol P,(a@) a valdszinisége, hogy aza forras az @ szamot
kiildi B-nek és C-nek, illetve P,(a|f5, ) a valosziniisége,

()
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hogy A az a kimenetet adja, ha 3,y értékeket kap a 3,y
forrasoktol. Fontos észrevenni, hogy mindkét egyen-
letben a forrasok fiiggetlenségét feltételeztiik, azaz pl.
P(d,ﬁ, 7) = Pa(d)Pﬂ(ﬁ)Py()?). Vegyiik észre, hogy ez egy
erds korlatozas a klasszikus modellekre vonatkozoan,
amit azért tesziink, hogy egyértelmi legyen a kvantu-
mos forrast hasznalé protokoll ,kvantumos elénye”.!

No, és mi az a kvantumos mérés, ami olyan eloszlas-
hoz vezet, ami hagyomdnyosan nem elérhet6? Az els6
javaslatok a szokasos Bell-dllapotokat osztottak szét a
résztvevok kozott, és Bell-méréseket végeztettek veliik.
Meglep6 moédon ez sajnos olyan korrelaciokhoz vezetett,
melyeket konnyen reprodukalni tudtak klasszikus mo-
dellek. Viszont ha |01) + [10) 4llapotokat osztanak szét
a felek kozott, és a résztvevok a két bejové moédusukon
a kovetkez6 Osszefond bazisban hajtanak végre mérést
(ahol u? € (0,5, ), > + 2 = 1),

foo), 1),
u|01>+v|10>, 3)
v|01)—u|10)},

akkor a korrelaciok az (1) egyenlet szerinti eloszlasban
olyan er6sek, hogy a korrelalatlan klasszikus forrasokkal
nem lehet reprodukalni ezeket [6-8] (Fotonokkal ez meg
is valosithato, lasd I'V. szakasz). S6t, az is megmutathatd,
hogy ha ezt az eloszlast tapasztaljuk a laborban, akkor fel-
téve, hogy a forrasok fiiggetlenek egymastol, dsszefono-
dott részecskeparok kellettek, hogy legyenek szétosztva,
valamint a mérések is dsszefond mérések kellett, hogy
legyenek. Ezekre épitve meg lehet mutatni, hogy valédi
véletlenszerliség van a mérési kimenetekben egy ilyen
helyzetben is [9].
Mik a kovetkezményei ennek? A fenti példaban csak
egy fix bazisban végezte minden fél a mérését, ezért
o nem kommutdlé mérések nem sziikségesek a nemlo-
kalitashoz, és
o bemeneti véletlenszerliség nem sziikséges ahhoz,
hogy véletlenszerli szamokat generaljunk.

Viszont fontos kiemelni, hogy a forrasok fiiggetlen-
ségét feltételeztiik. igy olyasfajta kiskapumentes kisér-
letet nem fogunk tudni végrehajtani, amelyet a hagyo-
manyos Bell-kisérleteknél lehetett. Ott ugyanis, ha a két
résztvevot elég tavol vittilk egymastdl, akkor garantalni
lehetett, hogy az egyik bemenetérdl ne tudjon a masik, és
vice versa, feltéve, hogy a bemeneteket tudjak valodi vé-
letlenszeriiséggel generalni (ezt gyakran a szabad akarat
feltételezésének hivjuk). A fenti haromszerepl6s esetben
viszont akarmilyen tavol vissziik is egymadstol a szemé-

Egy masik alternativa lenne, ha azt prébalnaink megmutatni, hogy
ilyen kvantumos forrasokbodl szarmazé korreldciokat semmilyen el-
képzelhetd klasszikus rejtett valtozé nem tud megmagyarazni. Ekkor
aklasszikus modell p(a, b, ¢) = [ dAp(a|D)p(b|A)p(c|A)p(A) formét dlte-
ne. Ez viszont olyan erds, hogy barmilyen korrelaciét képes el6allitani,
igy a bemenetek nélkiili halézatokban nincs értelme ezzel szembesite-
ni a korlatozott kvantumos korrelaciokat.

KRIVACHY TAMAS: FORDULAT KVANTUMHALOZATOKBAN: A MERESEK SZEREPE ATALAKUL

lyeket, a harom forras fiiggetlenségét ez nem befolyasol-
ja — a tavoli multban akar lehetne is egy kdzponti hatas,
ami korreldlja a harom forrast, igy egy ilyesfajta kdzponti
rejtett valtozé meg tudna magyarazni a kvantumkorre-
lacidinkat is. [gy maradunk abban a helyzetben, hogy a
klasszikus forrasok fiiggetlensége feltételezés marad, ha-
sonldan, ahogy a szabad akarat feltételezését is meg kel-
lett tartani a hagyomanyos Bell-kisérletben.
Osszességében egy sor érdekes elméleti vonatkozésa
van a haromszoghalézatnak. Ezzel parhuzamosan szép
lassan kezd kirajzoloédni egy kép, hogy csupan kétré-
szecskés kvantumforrasokkal nagyobb kvantumhaléza-
tokon is erés tobbszereplds korrelaciokhoz lehet jutni.
Viszont két nagy kérdés maradt még ebben a témaban,
amelyeket igyeksziink megvalaszolni.
1. Lehet-e alkalmazdsokat épiteni a hdl6zati nemlokali-
tasra?
2. Meg lehet valdsitani a halézati nemlokalitast kisérleti
koriilmények kozott?

I11. Alkalmazas nagy hal6zatokon

A Bell-nemlokalitas legtobb kriptografiai alkalmazasa
azon a tényen alapul, hogy a kimenetek bizonyithatéan
véletlenszertiek, feltéve, hogy a bemenetek (ne, 1égyszi)
egy potencialis rejtett valtoz6tél vagy tamadoétdl fiig-
getlenek. Azaz fontos, hogy valamennyire meg tudjunk
bizni a bemeneti vilasztasokat generdlé folyamatban,
tipikusan egy véletlenszam-generatorban. Kérdés, hogy
a bemenet hasznalatat el lehet-e keriilni a kriptogra-
fidban azzal, hogy a fentiekben leirt hal6zati nemlokali-
tast haszndljuk.

Kideriil, hogy igen, a hiromszoghal6zat kimenetei
is bizonyithat6éan véletlenszerliek, persze tovabbra is a
haldzati feltételezéssel élve [9]. Azaz fel kell tenni, hogy
nincsen egy kozponti rejtett valtozo, hanem ha léteznek,
akkor a rejtett valtozok is tiszteletben tartjak a hirom-
szogstrukturat (minden forras helyére egy klasszikus
rejtett valtozot képzeliink, (2) szerint), és fiiggetlenek
egymastdl. Van létjogosultsiga ennek a feltételezésnek?
Meggy6z6désiink, hogy van, ha kriptografiai alkalma-
zasok irdnyaba megyiink. Mert mi is a szerepe a rejtett
valtozénak? Az egy olyan dolog, ami meg prébalja hata-
rozni a kimenetek értékét ahelyett, hogy azt kvantumos
véletlenszeriség dontené el. Azaz nagyon hasonlit egy
kriptografiai tdmadora, hekkerre, aki megprébal be-
avatkozni abba, ahogy a véletlen szamokat generaljuk,
és megprobalja 6 eldonteni, hogy mik a mi kimeneteink
- mindezt a tudtunk nélkiil. Ilyen értelemben tekint-
hetiink a halézatban a rejtett valtozokra hekkerekként,
és a fiiggetlenségi feltételezés arra vonatkozik, hogy a
hekkerek egyiittmikodnek-e.

Igy a halézati fiiggetlenség kérdése dtalakul azzd,
hogy fel lehet-e tenni, hogy a potencialis tdmadok,
hekkerek, korlitozottan férnek hozza a héilézathoz,
és nem mikodnek mind egyiitt. Egy kis haromszog-

257



halézatban nehéz megindokolni, hogy miért dolgozna
kiilon harom kis hekker a harom forras helyén. De ha
lépilink egy nagyot, és megvizsgalunk egy N {6s hald-
zatot, maris mds képet kaphatunk. Legyen az N 6 egy
gylrilin ugy, hogy paronként vannak k6z6s kvantumos
forrasuk. Akkor minden forras kibocsétja a |01) + |10)
allapotot, és minden fél elvégzi a szokott (3) méréseket.
Ismétlések esetén egy p(a,, a,, ..., ay) eloszlasbol min-
tavételeziink, amit le is tudunk ellendérizni magunk-
nak, ha sokszor elismételjiik, és minden fél kijelenti a
kimenetét minden korben. Sikeriilt megmutatnunk,
hogy ez esetben [10]:

o Ha minden forras helyére egy hekker keriil, akik fiig-
getleniil mikodnek egymastol (3. dbra (a) topologia),
akkor nem tudjik a p(a,, a,, ..., ay) eloszlast reprodu-
kélni (azaz az eloszlas hilézat-nemlokalis).

o Ha az N hekkerb6l N - 2 szomszédos dsszedolgozik
(3. dbra (bl) topoldgia), akkor sem tudjak a p(a,, a,,
..., ay) eloszlast reprodukélni (azaz az eloszlis nem-
lokalitdsa robusztus a haldzat topoldgidjaval szem-
ben).

o Még akkor is, ha van N - 2 szomszédos hekker (a 3.

s ez

menetel véletlenszerd.

(a) ._éa_@ (by)

\
/S, ; /S, /S,

. Qy Syae|Ogsees iy

.sl ; .s; ®\.\s; / .

o Hi | b
@® @

3. dbra. (a) N résztvevé esetén a gylird halézaton mintavételezhetiink
egy p(ay, a,, ..., ay) eloszlasbol, ha kvantumosak a forrasok. Ha a forra-
sokat nem egyiittmi(ikod6 tdmadoékra cseréljiik ebben a gytiriben, ak-
kor nem tudjak befolyasolni a kimeneteket Gigy, hogy ne vennénk észre.
(bl) Ha a hédlézat nagy részében ismeretlen, hogy egyiittmiikodnek-e
a tamadok, akkor sem tudjak gy befolydsolni a kimeneteleinket, hogy
ne vennénk észre. (b2) A halézat ismeretlen részét modellezhetjiik egy
nagy egylttmiikodé félként, igy visszanyeriink egy (bévitett) harom-
sz0g-topologiat [10]

Ez elképesztden leegyszerfsiti és kriptografiai érte-
lemben lehet6vé teszi a nagy haldézatokban valé miko-
dést. Ugyanis ha N résztvevénk van, elég, ha csak egy
kis halozatrészben bizunk meg, gy is tudunk nemlo-
kalitast, véletlenszerliséget bizonyitani. Azaz nem kell
feltételezniink, hogy a hédldézatot tamaddk csak lokali-
san hekkelnek, és nem is miikodnek egyiitt. Nyugodtan
Osszedolgozhat majdnem az Osszes hekker és résztvevo
(3. dbra (bl)). EbbdI kiindulva fejlesztiink jelenleg egy
kriptografiai protokollt, amely

o nem igényel bemeneti véletlenszertiséget,

o minimalis tuddst igényel a halézat topologiajarol,
o miszerfiiggetlen,

o M < Nrésztvevd kozt 1étrehoz egy titkos kulcsot.
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IV. Kisérleti megvaldsitas neuralis halok
segitségével

Altalanossagban nehéz eldonteni, hogy egy adott
pa, b, c) eloszlisnak van-e (2) szerinti felbontdsa. A
hagyomanyos, egyforrasos Bell-kisérletnél ez egy kony-
nyen megvalaszolhat6 kérdés, ugyanis a klasszikus kor-
relaciok egy konvex politdpot alkotnak, igy elég ennek
extremdlis pontjait karakterizdlni. Ezzel szemben (2)
egy nem konvex halmazt ir le, igy annak még a nume-
rikus feltérképezése is nehézkes hagyomanyos heurisz-
tikus modszerekkel. Ezért gondolkodtunk el azon, hogy
esetleg modernebb eszkozokkel lehet-e valahogy kezelni
a problémat. Arra jutottunk, hogy ha egy mesterséges
neuralis halot atalakitunk, hogy alakja tiikrozze a hdlozat
topolégiajat, akkor az sziikségszertien csak a hdlézaton
lokalis (klasszikus) eloszlasokat tud eldallitani. Ezzel a
lokalis eloszlasokat fel tudjuk térképezni: megadunk egy
céleloszlast, és megkérjiik a neuralis halot, hogy alakitsa
a sulyait Ggy, hogy minél inkabb megkozelitse ezt a cél-
eloszlast. Ha sikeriil neki, akkor van egy explicit klasz-
szikus modellink. Ha viszont konzisztensen, tobbszori
probalkozasra sem sikeriil kozel keriilnie, akkor az erds
indikacio arra nézve, hogy a céleloszlds nemlokalis, nin-
csen klasszikus magyarazat [7].

A neuralis hdl6 igy kivalo tarsa az elméleti kutatonak,
ugyanis barmilyen 6tletiink van egy céleloszlasra, az al-
goritmus megmondja, hogy szerinte az nemlokalis-e.
S6t, nemcsak egy adott céleloszlast tudunk célba venni,
hanem megkérhetjiik, hogy egy sejtett Bell-egyenl6t-
lenséget probéljon megsérteni [11]. Igy sikeriilt is né-
hény sejtést felallitani, amelyek koziil egyet be is bizo-
nyitottak [8].

A neuralis haléonk (LHV-Net) mindmaig az egyetlen
praktikusan is hasznalhat6 algoritmus, ami megbecsiili,
hogy egy adott kvantumos stratégia mekkora zajt képes
elviselni gy, hogy még nemlokalis maradjon. Ez kife-
jezetten fontos kérdés, amikor nemcsak az elméletet
vizsgaljuk, hanem a kisérletek felé fordulunk. Mar van
is olyan haromszog-nemlokalitas kisérlet, aminek a ki-
értékeléséhez az LHV-Netet haszniltak, illetve sikerilt
is az imént felallitott egyenlGtlenségeket megsérteniiik
[12].

Ehhez a kisérlethez musz3j volt a végeredményeket
utélag, globalisan feldolgozni, és lesziirni ezekbdl, hogy
milyen lett volna az eloszlas, ha minden foton megérke-
zett volna. Sajnos viszont ilyen globalis feldolgozas (ahol
pl. selejteziink egy kort, ha nem érkezett meg elég foton
mondjuk, Alizhoz) nagyon erés, s6t tetsz6leges korrela-
cidkat is 1étre tud hozni a harom résztvevé kozott klasz-
szikus forrasokkal is,” tehat egy szigoru kisérleti eljaras-
nil ez nem lenne megengedhetd. gy jutunk el a halézati

* Képzeljiik el példaul, hogy harom klasszikus forras csak random kiild
egy bitet (0-t vagy 1-et) mindkét félhez. A felek globalis feldolgozassal
elvetik azokat a koroket, amelyekbennema=b=c=0vagya=b=c=
1 volt a kimenetel, igy elképesztéen erds korrelaciéhoz jutnak.
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nemlokalitds masodik nagy kérdéséhez: meg lehet-e va-
l6sitani a laborban, lehet6leg optikaval, ami nagy tavol-
sagokon is hasznalhat6?

A halézati nemlokalitas kisérleti megvaldsitasat ke-
resve kitalaltunk egy optikai elrendezést, ami kdnnyen
megvalosithato lenne: [01) + |10) 4llapotokat bocsatanak
ki a forrasok, és ezek nyaldbosztokra érkeznek, majd
megmérjiik, hogy érkezett-e foton (2. dbra). Megkérdez-
tiik az LHV-Netet, hogy nemlokalis-e a javasolt kisér-
letbdl szarmazé eloszlas. Hamar megtudtuk, hogy igen,
igy tudtuk, hogy megéri raforditani az id6t és energiat,
hogy bebizonyitsuk a nemlokalitasat. Ez sikeriilt is, és az
elméleti vizsgalat soran kideriilt, hogy ez gyakorlatilag
optikai megvaldsitasa a (3) mérésnek [3]. Ez egy gyonyo-
ri optikai értelmezését is adja annak a helyzetnek, ahol
a kvantumel6ny abbdl szarmazik, hogy bizonyos kime-
neteleknél (azokndl, amikor minden félhez egy foton
érkezett) a fotonok annak szuperpoziciéjaban vannak,
hogy mind jobbra, mind balra mentek a halézatban, azaz
a globalis allapot ekkor

¥ oc|O)+|O). (4)

Klasszikusan vagy az egyik, vagy a masik iranyba haladva
tudnanak eljutni az dsszes résztvevéhoz.

Sajnos az is kideriilt, hogy ha vannak veszteségek az
optikai modusokban vagy a mérési berendezésben, ak-
kor nagyon hamar elhal a nemlokalitas, kériilbeliil 5%
veszteséget tiir el (elméleti Gton bizonyitottan csak kb.
0,5%), ami messze a sziikséges kisérleti kiiszob alatt
van. Ennek javitasara kicsit médositottunk az elrende-
zésen: nem |01) + |10) 4llapotokat kiildetiink a forra-
sokkal, hanem [02) + |20) 4llapotokat, azaz két fotont.
Kisérletileg ezek az allapotok is még ,konnyen” meg-
valdsithatéak, és az LHV-Net azt sigta nekiink, hogy
igy is nemlokalis az eloszlas (ugyanazokat a nyalabosz-
tokat hasznalva), s6t a hibat{irése sokkal jobb, akar 50%
veszteséget is képes elviselni. Elméleti munkaval preci-
zen is sikeriilt bebizonyitani az eloszlis nemlokalitasat,
illetve azt is, hogy egyfotonos veszteségek ellen 10%-o0s
hibat képes eltlirni. Radadasul megadtunk egy modszert,
hogy hogy lehet elkeriilni a globalis utélagos feldolgo-
zast. A robusztussdg nagysagrendileg jobb, mint az egy-
fotonos sémaban, ami megnyitja az utat a kiskapumen-
tes kisérletek el6tt [4].

V. Végsz6

Osszefoglalva, a kvantumos halézatokban vizsgilva a
nemlokalitast meg tudjuk alapozni a jov6 kvantumos
internetének kriptografiai protokolljait, mikozben érde-
kes kérdéseket vizsgalhatunk a kvantumfizika alapjairol.
Az egyik legérdekesebb tény az, hogy nem kell tobbfajta
(nem kommutald) mérés ahhoz, hogy tandsitvanyt allit-
sunk ki véletlenszertségrdl és osszefonddottsagrol, ha

hajlandéak vagyunk a halézatrél bizonyos dolgokat fel-
tételezni. Kutatasunk folytatasaképp ezeket a sziikséges
feltevéseket vizsgaljuk jobban: nagy halozatok esetén
elég, ha csak egy kis részét ismerjiik jol a halézatnak, gy
is lehet tanusitani véletlenszert{iséget és arra kriptografiai
protokollokat épiteni. Ehhez kicsit at kell formalnunk a
gondolkodasunkat, jobban kozelitve az elosztott szami-
tas, decentralizalt rendszerek mentalitasahoz. Végiil az
elméleti és alkalmazott vonatkozasok mellett egy egé-
szen érdekes matematikai és numerikus feladvannyal is
jar a lokalis korrelacidk feltérképezése [11], ami egy Ru-
bik-kocka- vagy sudokuszeri feladvany.
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UJ PERSPEKTIVAK A KVANTUMOS RENDSZEREK
KLASSZIKUS SZIMULACIOJABAN

Bevezetés

A fizika tudomanyaban az elmult évszazadban tortént
elképeszt fejlodés egy jelentSs része a mikroszkopikus
vilag egyre pontosabb megértéséhez kapcsolodott. Meg-
tudtuk: az atomok, molekuldk, atommagok és az ezeket
alkot6 szubatomi részecskék vilagaban a klasszikus fizika
torvényei érvényiiket veszitik, megkeriilhetetlenné valik
a természet kvantumos viselkedése. A kvantumelmé-
let kutatasa és egyre precizebb megértése azonban nem
csupan rendkiviil érdekes tudomanyos feladat, hanem
kiilonféle technoldgiai alkalmazasok sorat teszi lehet6vé.
Gondolhatunk itt tobbek kozott az atomenergiara vagy
kiilonféle elektronikai eszkozeinkre, melyek nélkiil ma
mar szinte elképzelhetetlenek a mindennapjaink.

A t6bb részecskét tartalmazé rendszerek viselkedé-
sének megértése a kvantummechanika sziiletése 6ta ko-
moly kihivasok elé allitja a fizikuskozosséget. Analitikus,
akar papiron elvégezhet6 szamitasok csupan kozelités-
ként, illetve nagyon kicsiny vagy specialis modellrend-
szerekre alkalmazhatéak. Numerikus szimulaciok fut-
tathatéak hagyomanyos szamitégépeken, de mint majd
latjuk, a hatalmas allapottér - ,a dimenzionalitds atka” -
igencsak megneheziti a dolgunk. Nem véletleniil idézziik
gyakran Feynmant, aki szerint a természet igazan haté-
kony szimulacidjara csak kvantumos eszkozokkel lehet
reményiink [1], melyekben megvalésithatéak, kontrolldl-
hat6ak és manipuldlhatdak az 6sszefont sokrészecskés al-
lapotok. Valéban, a kvantumchipek megvaldsitasa terén
az utdbbi évtizedben tapasztalt ugrasszerd fejl6dés azzal
kecsegtet, hogy a kozeli jovében alkalmassa valhatnak
valodi fizikai rendszerek preciz szimulacidjara [2]. Amig
azonban eljon az Un. ,kvantumf6lény” ideje, hagyoma-
nyos (Ggymond klasszikus, azaz nem kvantum-) szami-
togépekre kell hagyatkoznunk, és mint jelen cikkiinkben
is mutatjuk, béven vannak még lehetdségek a klasszikus
algoritmusok fejlesztése terén is. Rdadasul a klasszikus
szamitégépek nagyobb flexibilitasa a kvantumos hard-
verekhez képest elérelathatélag hosszabb tavon is meg
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fog maradni, ezért az is elképzelhetd, hogy a j6v6 a hib-
rid kvantum-klasszikus megoldasoké lesz, ahol tovabbra
is 1ényeges feladat harul majd a klasszikus algoritmusa-
inkra. Kutatécsoportunkban, a Legeza Ors 4ltal vezetett
Erésen Korreldlt Rendszerek ,Lendiilet” Kutatdcsoport-
ban éppen ilyen kiemelked6en hatékony klasszikus algo-
ritmusok kutatasaval foglalkozunk.

Kvantumos soktestrendszerek

A fent vazolt szimuldciés nehézségeket, nevezetesen a
hatalmas dllapottér problémdjdt, el6szor egy mindenki
altal jol ismert kvantumrendszeren, a nitrogénatom pél-
ddjan mutatjuk be, melynek leggyakoribb izotépja egy
7 protonbol és 7 neutronbdl allé6 atommagot, valamint
7 elektront tartalmaz. A nehéz atommagot Osszetart6
er6k sok nagysagrenddel er6sebbek az elektronokat pa-
lyan tarté Coulomb-kolcsonhatasnal, amit kihasznalva
azonnal kozelitést alkalmazunk: a magot klasszikus go-
lyonak képzeljiik, mely csupan vonzé potencialjaval hat
az elektronokra. A feladatunk tehdt 7 elektron egyiittes
kvantumallapotanak megadasa vonz6 Coulomb-poten-
cidlban. Ez a probléma mar kozépiskolai kémiadrakon
teritékre keriilt. A kiilonbozd fo-, mellék- és mdgneses
kvantumszdmii pdalydk betéltési sorrendjével, valamint a
spinekre vonatkoz6 Hund-szaballyal mindenki talalko-
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1. dbra. A nitrogénatom elektronszerkezetének kozépiskoldban tanult
konfiguricidja. A valdsagos kvantumallapotban egyéb konfiguraciok,
példaul (a) és (b) megjelenhetnek kis amplitidéval, bar az alapallapot-
ban az (a) konfigurdcié nem ad jarulékot, hiszen teljes spinje eltér az
alapallapotétol
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lacidinak témakorében dr. Katz Sindor té-
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REN Wigner FK Elméleti Szilardtestfizikai
Osztélyanak, Legeza Ors iltal vezetett Erd-
sen Korrelalt Rendszerek Kutatécsoportja-
hoz, ahol tobbek kozott az erdsen korrelalt
kvantummechanikai rendszerek dinamikaja-
nak szimuldcidival foglalkozik.
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zott, melyek alapjan az elektronfelh6 szerkezete felirha-
t6 (1. dbra). Ez az egyszerlinek tind kép az igen durva,
ambar hatékony Hartree-Fock-féle atlagtér-kozelités
eredménye, ahol megkdveteljiik, hogy az egyes elektron-
palyak betoltottsége pontosan 0 vagy 1 legyen.! Az atom
alapallapotat ebben a kozelitésben variacios elv alapjan
lehet definidlni: az egyes elektronpalyak alakjat valtoz-
tatgatva keressiik azt a konfiguraciot, ahol az alapallapoti
energia (varhatd) értéke a legkisebb, mikozben a palyak
betoltottsége valtozatlan marad. Az igy nyert megoldas-
sal azonban tobb probléma is van: ez az allapot nem meg-
olddsa az id6fiiggetlen Schrodinger-egyenletnek, azaz
nem sajatallapota a rendszer Hamilton-operatoranak,
ami azt jelenti, hogy az energia varhato értéke az alapalla-
poti energianal magasabb. Az Ggynevezett kémiai pontos-
sagot, melynek elérésére sziikség van ahhoz, hogy kémiai
folyamatokat elfogadhaté pontossaggal modellezziink,
altaldban 4 kJ/mol értékben definidljak.> A Hartree-
Fock-elmélet hibaja ennél sajnos nagyjabdl harom nagy-
sagrenddel magasabb, ezért lényeges pontositasra szorul.
A Hartree-Fock-megoldasbdl kiindulva pontosabb
elméletet épithetiink Ggy, hogy az alapkonfiguricién tul
megengediink mas betoltottségl konfiguraciokat is (I.
dbra a és b konfiguracio). A legpontosabb leirast igy nyer-
hetjiikk - rogzitett atommagokat feltételezve —, ha minden
lehetséges betoltottségl konfiguraciét megengediink (Un.
teljes konfiguracidés kolcsonhatas, full-CI leiras), a sok-
elektronos hullamfiiggvényt pedig az 6sszes konfiguracié
linearis szuperpozicidjaként keressiik. Az igy magunk elé
tlizott szamitasi feladat azonban rettent6 nehéz: ha az
egyes elektronok dltal elfoglalhat6 palyak végtelen szamat
valamely véges N értékre korlatozzuk is, az allapotteriink
dimenzi6ja 2V lesz, ami viszonylag hamar (N = 30-40)
kezelhetetlenné valik akkor is, ha megmaradasi tételek
(elektronszam, spin) segitségével a megfeleld alterekre kor-
latozzuk a szdmolast. Ha példaul » elektront tekintiink N
palyan, 4gy a megfelel$ részecskeszamu altér dimenzidja
csupan (¥), ez azonban még mindig nagyon gyorsan n6
N és n fiiggvényében. Ez a méltan hirhedt jelenség a ,,di-
menzionalitas atka”, melyet tobbféle Uton igyekezett a
fizikus- és kémikuskozosség megkeriilni vagy megolda-
ni, igy ma mar szamos modszer 4ll rendelkezésiinkre,
melyek koziil ebben a cikkben az Uin. matrixszorzat-al-
lapotok (MPS) keriilnek teritékre. Minden kozelité mod-
szerben kozds, hogy a sokelektronos hullamfiiggvényt a
kozvetlen felirashoz képest lényegesen kevesebb paraméter
segitségével probaljuk jellemezni, tobb-kevesebb sikerrel.

Mitrixszorzat-allapotok

A fenti gondolatmenetét kovetve, a sokelektronos hul-
lamfiiggvényt az alabbi alakban keressiik

! Cikkiinkben az egyszertiség kedvéért az azonos térbeli, de eltérd
spini elektronallapotokat kiilon palyanak tekintjiik.

2 Ez az érték részecskénként nagysagrendileg kzT energiabizonyta-
lansagnak felel meg, ahol k3 a Boltzmann-élland6 és T = 300 K a
szobahémérséklet.

|W)= z Cov.on 0'10'2...0'1\,), (1)

ahol g; € {0, 1} jeldli az i-edik palya betoltottségét a
|0, 0,... ox) konfiguraciéban, és a C, ,, ., kifejtési egyiitt-
haték (amplitidok) jellemzik a hullimfiggvényt a 2V
dimenzids allapottérben. Célunk ezen amplitidék meg-
hatdrozasa az id6fiiggetlen Schrodinger-egyenlet (H|Y)
= E,|¥)) megoldisin keresztiil, azaz megkeresve a H
Hamilton-operator |¥) alapallapotat, ahol

N N
H=YTicle,+ Y. Vclciee. )
i,j=1 i,7,k,I=1

Itt az 4, j, k, | indexek az egy elektron altal elfoglal-
hat6é N lehetséges palyat jelolik. A ¢ és ¢; operitorok
az elektronokat keltd és eltiinteté operatorok, melyek
(az Gn. fermionikus elGjeltd] eltekintve) csupan a o;
betoltottséget valtoztatjak 0-rol 1-re és viszont, és ez-
zel atmeneteket hoznak létre a kiilonféle konfiguraciok
kozott. A T, és Vy sulyok az elektronok kinetikus és
potencialis energidjat jellemzik, 6ket az elektronpalyak
térbeli alakjanak ismeretében lehet meghatarozni.

A fenti megkozelités nehézségét a C,,,, ., egylitt-
haték nagy szdma adja. Bar megmaradasi tételekkel ez
a szam valamelyest csokkenthetd, a relevans dimen-
zi6 még igy is kezelhetetleniil gyorsan né altaldban a
megengedett palyak szdmaval. A tenzorszorzat-allapot
(TNS), és ezen belill a matrixszorzat-allapot (MPS)
megkozelitések alapotlete, hogy a sokindexes C,,, . o,
egyiitthatot kisebb matrixok (tenzorok) szorzataként ir-
hatjuk fel. Alabb latni fogjuk, hogy ez a feliras kivaléan
alkalmas az allapot hatékony tomoritésére. Matrixszor-
zat-allapotok esetén ez a

Coor o = Z AL g2k gDy NI 3)

(23153 ON-20N-1 an-1
a..0n-1

alakot jelenti, mely alakot a konnyebb megértés érdeké-
ben grafok segitségével szoktunk abrazolni, ahogy a 2a.
dbran is lathaté. A kiilonféle sokindexes mennyiségeket
(tenzorokat) egy sikidommal (korrel, téglalappal stb.)
reprezentdljuk, az indexeket pedig a sikidombdl kil6go
vonalak (1abak) jelolik. Ha két tenzor labait 6sszekotjiik,
akkor az adott indexre Osszegzést irunk el6. A 2a. dbrdt
Osszevetve a (3) egyenlettel lathatjuk, hogy a harom- (illet-
ve két végén két-) indexes A tenzorok a vizszintes labak-
nak megfelel6 a; indexek szerint fel vannak 0sszegezve.

A matrixszorzat-allapot leirdsinak tomoritése abban
all, hogy az a, indexek lehetséges értékeit megszorit-
juk: a; € {1, 2, ...., M}, ahol M az Ggynevezett virtualis
dimenzi6, vagy ,bond” dimenzié, igy a C,, .., egyiitt-
hatét 2NM?* << 2N paraméterrel jellemeztiik. A tOmorités
mértékét az M dimenzié megvalasztisa hatarozza meg.
Specialis esetként, amennyiben az N palyét a korabban
bevezetett Hartree—Fock-elmélet alapjin valasztottuk,
a Hartree-Fock-megoldas egy M = 1 dimenzi6ji mat-
rixszorzattal, azaz egyszer( szorzatallapotként irhaté fel.
Ebben az esetben a (3) formulaban nincs felosszegzés, és
a C mennyiség egyetlen konfiguraciora lesz 1, a tobbire
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zérus.> M > 1 esetén azonban tobb konfiguracié amp-
litiddja - akar az Osszesé is — zérustol kiillonboz6 lehet.
A matrixszorzat-allapot alakon tdl az irodalomban mas
tenzorhdaldzat-allapotokat is bevezettek, példaként a 2¢-d.
dbrdn az MPS kétdimenzios, illetve fagraf altalanositasat
mutatjuk [5].

Természetesen meriil fel a kérdés, hogy mennyire
hatékonyan tudunk igy tomoriteni, azaz mekkora bond
dimenziot (M-et) kell valasszunk a hullamfiiggvény sza-
munkra elfogadhat6 kozelitéséhez? Feltéve egy pillanat-
ra, hogy ismerjiik a C,, ., egyiitthatokat, az indexeket
két csoportra osztva (0, ... 0;| 0, ... 0y), meghatirozhatjuk
a C tenzornak a linearis algebrabdl ismert szingularis-
érték-dekompozicidjat,

o min (i, N~i)

Z U(Glmﬂ', Ya ﬂ’al/(a,ﬂ.“ahv Ya- (4)

a=1

C

0102..0N

A A, 2 0 szamok az un. szingularis értékek, mig az
U és V tenzorok kiilonb6z6 a-hoz tartozd ,oszlopai” az
un. szingularis (egység-)vektorok. A C egyiitthaté ko-
zelithetd, ha a csokkené sorrendbe rendezett A, soro-
zatnak csupan a legels6 M tagjat tartjuk meg, és ennek
megfeleléen a (4) formulaban az dsszeg csak M tagbodl
fog allni. Az elhanyagolt A,., stilyok négyzetdsszegét
csonkolasi hibanak nevezziik, ez jellemzi a kozelitésiink
pontossagat. Az U és V tenzorok tovabbi sorozatos de-
kompozicidjaval és csonkolasaval nyerhetjiik a (3)-ban
szerepl6 matrixszorzat alakot. A dekompoziciok termé-
szetesen csonkolas nélkiil is végrehajthatdk, azaz a (3)
felbontds precizen (csonkolasi hiba nélkiil) elvégezhet6
tetsz6leges C egyiitthatoéra, ha kell6en nagy M-et valasz-
tunk.

Az adott pontossaghoz sziikséges M és a csonkola-
si hiba Osszefiiggésbe hozhaté a kvantuminformacié-
elméletben alapvet6 jelent6ségli Neumann-entropiaval,
amit az elektronallapotok altalunk vizsgalt felosztasara a

S=-Y AIn(27) (5)

formula definial. Ez a mennyiség a sokelektron-hullam-
figgvény kvantumos 6sszefon6dasat jellemzi: a nagyobb
entropia er6sebb 0Osszefonddast jelent, ami egyben
sziitkségessé teszi nagyobb M dimenzié alkalmazasat is.
Ennek megfeleléen a matrixszorzat-kozelités akkor al-
kalmazhat6 a leghatékonyabban, ha a sokelektron-hul-
lamfiiggvény 6sszefonddasa kicsi.

Nem véletlen, hogy a strliségmatrixos renormalds-
csoport-mddszert (DMRG), amely az egyik legkorabbi
matrixszorzat-allapot alapu alapallapot-kozelit6 algorit-
mus volt [3, 4], el6sz6r egydimenzids spinlanc-modellek-
re vezették be, hiszen ezeknek a modelleknek az alapdl-
lapota a kritikus pontoktél tavol gyengén 6sszefonddott.
igy mar kis matrixok (M = 10-100) esetén példatlan
pontossag volt elérhet6 gyakorlatilag tetsz6legesen hosz-

* A nitrogénatom példdjaban a tankényvi konfiguraciora Cig e,
az Osszes tobbire zérus.
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2. dbra. (a) A C egyiitthatotenzor (3) matrixszorzat-felbontdsanak grafi-
kus megjelenitése. Az Osszekotott a) labakra Osszegzést kell végezni.
(b) A matrixszorzat-felbontas alapjaul szolgdlé (4) szinguldrisérték-de-
kompozicié grafikus megjelenitése. (c, d) Kétdimenzids tenzorhdlézat
(PEPS) és fa-tenzorhélézat (Tree-TNS) grafja

szd lancok esetén. A moddszert késébb altalanositottak
két- és magasabb dimenziés modellekre, valamint a (2)
altalanos alakban felirhaté kvantumkémiai és magfizi-
kai rendszerekre. Bar az eredmények ekkor is meggy6-
z0ek, a sziikséges tarolasi és szamitasi er6forrasok igen-
csak megnének. Rendkiviil nagy, M > 10* matrixokra
lehet sziikség, és az elérhet6 palyak, racspontok szdma is
limitalt, N < 100-200. Megmaradasi tételek alkalmazasa
nélkiil egy ekkora matrixszorzat-allapotnak mar a tarola-
sahoz 400-600 GB tarhelyre van sziikség, de megmara-
dasi tételeket hasznalva is hamar elhasznalhaté 50-100
GB, amihez ezutin hozzdadédik a Hamilton-operator
altaldban ennél is nagyobb tarhelyigénye.

Elektronpalyak in situ optimalizalasa

Lathattuk, hogy a matrixszorzat-megkdozelités tarolasi
és szamitasi koltsége az M bond dimenzié fliggvénye.
A hullamfiiggvényiink azonban fiigg a palyak altalunk
valasztott sorrendjétdl és maguknak a palyaknak a tér-
beli alakjatol is. Ha példaul elektronok szabad gazat te-
kintjiik, ahol a kolcsonhatds elhanyagolhatd, konnyen
megadhatd az alapdllapot: az elektronok az egyrészecs-
kés allohullampalyak koziil toltik be a legalacsonyabb
energidjuakat. Ha tehdt ezt az allapotot alléhullam-
palydkon irjuk fel, gy mar M = 1 (szorzatallapot)
elegendd a térbeli dimenziétdl fiiggetleniil. Térben
lokalizalt palyakat valasztva azonban nagy, a térbeli
dimenzi6tol és rendszermérettdl is fiiggd M valasztasa
sziikséges.

Ha az elektronok ko6zotti kolcsonhatést is szamitasba
vessziik, a gyakorlatban nem tudjuk el6re megmondani
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azokat a palyakat, amelyekkel az optimadlis matrixszor-
zat-allapot leirasa nyerhetd. Molekuladk esetén az eredeti
variaciés Hartree-Fock-moddszerrel nyerheté palydk,
melyeket gyakran alkalmazunk kiinduldsként, varhat6-
an csak akkor lesznek megfelel6ek, ha a tényleges alap-
allapot kozel van a Hartree-Fock-megoldashoz (un.
egyreferencias probléma). Ezek a problémdk azonban
masnumerikusmodszerek szamaraisjolhozzaférhetdek,
igy kevésbé érdekesek a tenzorhaldzat-algoritmusok
szempontjabol. Abban az érdekes esetben, ha nincs a
palyaknak egy el6re jol meghatarozhaté alapkonfigura-
cidja, akkor a matrixszorzat-allapot leirds nagyban javit-
hat6 a palyak adaptiv - az alapallapotot kozelit6 algorit-
mussal parhuzamosan végrehajtott — optimalizalasaval
[6-8]. Itt is tobbféle megkozelités koziil valaszthatunk.
Elképzelhetd, hogy a kezdeti N palyank Osszessége meg-
feleld, ezért az elektronpalyak szuperpozicidjat csak ezen
az N dimenzids téren engedjiikk meg.

A palyak megvaltoztatasa ilyenkor technikailag azt
jelenti, hogy a ¢ és c; operatorokbdl egy megfelel§ R;
forgatismatrixszal dttériink egy Gj d} = IR, ¢} és d; =
3.Rj;c; operatorcsalddra, majd a T és V, egyiitthato-
kat agy transzformaljuk, hogy a (2) Hamilton-operator
valtozatlan maradjon. Ilyen atalakitdsokkal az (1)-ben
felirt allapotnak csupdn a matrixszorzat-kozelitését tud-
juk javitani, hiszen csonkolds nélkil tetszéleges |[¥)
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3. dbra. (a) A kétdimenzids racsmodell sematikus dbraja. Az elsé és
masodszomszéd ugrisokat is figyelembe vevé T-T'-V modellben a
részecskék a rics élein és dtlésan ugralhatnak a ricspontok kozott, a
szomszédos részecskék kozotti kolesonhatas eréssége V. (b) A szamitési
komplexitds (miiveletszam) és az alapéllapoti energia a lokalizélt és op-
timalis palyakon 10 x 10-es racson [7]. Az adatpontok mellett feltiintet-
titk az M bond dimenziéértéket is. Hasonld pontossag eléréséhez hairom
nagysagrenddel kevesebb miivelet végrehajtisa sziikséges az optimali-
zélt bazison, (c) Az entrépiaprofil valtozasa a palyaoptimalizicié sordn
[8]. Az egyes gorbék kiilonboz6 iterdcidkhoz tartoznak, melyek sorsza-
mat az dbra fejlécén mutatjuk
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hullamfiiggvény felirhaté fiiggetlentil a palyak fenti
megvalasztasatol. Azonban mar ezzel a korlatozott pa-
lyaoptimalizacidval is gyakran komoly javulast tudunk
elérni.

A 3. dbrdn részecskék (elektronok) kétdimenzids
racsmodelljére kapott eredményeit mutatjuk, ahol a ré-
szecskék egy négyzetracs kozeli racspontjai kozott ugral-
hatnak, mikozben els6 szomszédok kozott taszitod poten-
cial 1ép fel. Ezen szildrdtestfizika dltal motivalt modellen
jol tesztelheté a modszer, mikozben vizsgdlhato az opti-
mdlis palydak paraméterfiiggése is. A Hamilton-operator a
legtomorebben akkor irhaté fel, ha a bazisként szolgalé
palydkat a racshelyekre lokalizaljuk, hiszen ekkor a T};és
Vi sulyok nagy része nullava valik. Mint korabban mar
emlitettiik, elhanyagolhaté kolcsonhatas esetén az op-
timalis palyak sikhullamok, mikdzben nagyon erés kol-
csOnhatds és félig toltott racs esetén a részecskék sakk-
tablaszeri elrendezést preferalnak lokalizalt palyakkal.
Az érdekes tartomany ezért épp a kozepesen erds kol-
csOnhatas esete, amit a 3c. dbrdn is vizsgalunk. Az alap-
allapot 0sszefonddasi entrépiaprofilja az eredeti lokali-
zalt palyakra igen magas. A palyaoptimalizacié soran e
profil alatti teriiletet minimalizaljuk, és mint lathatjuk,
ez igen hatékonyan megtehet6: a gorbe maximuma a
negyedére, a gorbe alatti teriilet kevesebb mint a tize-
dére csokkenthet6 az abran mutatott esetben. Meg kell
jegyezniink viszont, hogy a lokalizalt bazistdl val¢ eltérés
miatta T}; és Vj;, stlyok korabban zérus elemei immar vé-
ges értéket vehetnek fel, ezért a szemfiiles olvaséban fel-
meriilhet a kérdés, hogy a szamitasi igény szempontjabol
nem veszitjiikk-e el a vimon azt, amit a réven (azaz az M
bond dimenzid esetleges csokkentésével) nyertiink. A
3b. abranlathatjuk, hogy a kétdimenzios raicsmodelliink-
nél hatarozottan nem ez a helyzet: 10 x 10-es racs esetén
az optimalis bazisban mar M = 64 mellett alacsonyabb
alapallapoti energiat kapunk, mint a lokalizalt bazisban
M = 3096 mellett, mikdzben a sziikséges aritmetikai mi-
veletek szdma nagyjabdl harom nagysdgrenddel kisebb
az el6bbi esetben. Ehhez még azt is érdemes hozzaten-
ni, hogy a ,stiribb” T} és Vi, hatékonyabb GPU-alapu
parhuzamositast tesz lehetévé, igy mar kozepes bond
dimenzidk (M = 2000-3000) mellett is teljesen kiakndz-
hat6 egy legjabb, Al-alkalmazasokra optimalizalt nagy
teljesitmény szuperszamitégép-nodus [7]. Az optimali-
zalt bazis végeredményben akar 4-5 nagysagrenddel is
gyorsabb szamitast tesz lehet6vé. Tovabbi fontos észre-
vétel, hogy az Osszefonédast mérd entrdpia igen robusz-
tus mennyiség, ezért a palyaoptimalizaciot altalaban ele-
gend6 alacsony M mellett végezni, igy ennek szamitasi
igénye szintén mérsékelt marad.

A fent leirt pdlyaoptimalizdcio egyik nagy hdtrinya,
hogy nem ad lehetdséget az eredeti N pdlya dltal kifeszi-
tett altér elhagydsdra, pedig a lehetséges pdlydk végtelen
dimenzids Hilbert-teret alkotnak. A DMRG-t mds algo-
ritmusokkal kombindlva végezhetd pdlyaoptimalizdcio
dltaldnosabb médon 1igy is, hogy a palyak keverése soran
megengedjiikk az N dimenzids aktiv téren kiviili palya-
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kat is. Ez elvben lehet6vé teszi a nem optimalis kezdeti
palyavalasztasunk javitasat is. A DMRG-SCF moédszer-
ben az alapallapotot MPS segitségével kozelitjiik, majd
a hullamfiiggvénybdl szarmaztatott, egy- és kétrészecs-
kés potencialok (az elektronfelhé onkonzisztens terei)
alapjan kisérelink meg alkalmasabb palyakat javasolni
[9]. Egy masik lehet&ség, hogy a korabbi N palya mel-
lett tovabbi palyakat is figyelembe vesziink, azonban
csak korlatozott médon: ezeken a kiegészité palyakon
az alapkonfiguracidhoz képest csak egy vagy két eltérést
engediink meg Osszesen [10]. Az eredeti, N palyas lancot
az gy kapott Gn. korlatozott aktiv térrel kiegészitve le-
het6vé valik a gyengébb, de fontos dinamikus korrela-
ciok figyelembevétele. Az el6bb bemutatott médszer és
az adaptiv modustranszformacié 6tvozése egy természe-
tes altalanositds, amihez tovabbi algoritmikus megolda-
sokon terveziink dolgozni a jovében.

Cikkiinkben réviden attekintettiik a kvantumrend-
szerek klasszikus szimulacidjat, ezen beliil is a mat-
rixszorzat-dllapotokon alapulé mddszereket. Mivel a
kvantumallapotok 06sszefonddas-alapt tomoritésének
hatékonysdga éppen a vizsgalt allapot kvantumossa-
gatdl fiigg, ezek a mddszerek nem csupan hatékony
numerikus eszk6zok, hanem betekintést nydjtanak az
allapotban tdrolt kvantuminformacié strukttrijaba
is. A részrendszerek Osszefonddasa erésen fiigg azok
megvalasztasatol, és ez a matrixszorzat-allapot leira-
sanak hatékonysagat is drasztikusan befolyasolja. A
kétdimenzidés racsmodell példajan lathattuk, hogy egy

sokrészecskés allapot esetén a palyak optimadlis megva-
lasztasa tobb nagysagrenddel csokkentette a sziikséges
szamitasi er6forrasokat.

Hala a fizikus- és kémikuskozosség elszant kutato-
inak, a klasszikus algoritmusaink folyamatosan fejléd-
nek, igy képezve erds versenytarsat a szintén rohamosan
fejl6d6 kvantumelven m{ik6dé hardvereknek. Hisziink
abban, hogy ez a verseny inspirdcioként szolgal mind a
klasszikus, mind a kvantumos megoldasok fejleszt6inek,
tovabba lehet6vé teszi, hogy feltérképezziikk az egyes
megoldasok helyes alkalmazasi teriileteit, valamint utat
nyithat az esetleges hibrid kvantum-klasszikus megolda-
sok felé is.
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A7 ARAMKOROK KVANTALASA ES A SZUPRAVEZETO
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Bevezetés

Az elektromos aramkorok mara megkeriilhetetlenek a
mindennapokban. Bar a klasszikus Maxwell-egyenletek
segitségével az aramkorok tobbségét nagy pontossig-
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gal meg tudjuk tervezni, amikor méretitk megkdozeliti a
nanométeres skalat, a kvantumos effektusok fontossa
valnak, és médositanunk kell a klasszikus modelliiket.
Példaul, a tranzisztorok vagy a flashmemoridk tervezé-
sében a kvantummechanikai alaguiteffektus fontos
szerepet jatszik, ami befolyasolja az elektronikai alko-
téelemek szigetel6 anyaginak a megvalasztasit és az
elektrédak geometriai kialakitasat. Ezzel szemben van
egy teljesen mas tipusu elektronikus rendszer, a szupra-
vezetd aramkorok, ahol a kvantumos effektusok nem-
csak kisebb moddositasokként jelennek meg, hanem
alapjaiban valtoztatjdk meg az dramkorok tulajdonsa-
gait. Ebben a cikkben ezeket a kvantumaramkoroket
targyaljuk, amelyek mint tervezhet6 és hangolhat6 mes-
terséges atomok a szupravezeté kvantumszamitégépek
[1] alapjaul szolgalnak.
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A mechanikai rezgémozgas klasszikus és
kvantumos fizikaja

Miel6tt ratérnénk az elektromos aramkorok kvantum-
fizikai leirasara, érdemes felidézni egy mechanikai pél-
dat: az egydimenziés harmonikus oszcillatort. Ebben
a rendszerben egy rugoéhoz erdsitett tomegpont végez
harmonikus rezgémozgast egyensulyi helyzete koriil.
A rendszer teljes energidja - a Hamilton-fliiggvénye - a
tomegpont kinetikus és potencidlis energiajabol adodik
Ossze:

2

yas
2m

Itt k a rugdallando, m a részecske tomege, p az im-
pulzusa és x a helyének koordinatija. Fontos megje-
gyezni, hogy a helykoordinata és az impulzus konju-
galt fizikai mennyiségek, mivel {x, p} = 1, ahol {x, p} =
(0x/0x)-(dp/9p) — (Ip/dx)-(dx/dp) a Poisson-zardjelet
jeloli. A mozgas dinamikajat a ¢ id6 fliggvényében a
Hamilton-egyenletek megoldasaval kapjuk meg, ami egy
szinuszos rezgémozgashoz vezet: x(f) = x,cos(wt + @),
ahol w = Vk/m akorfrekvencia, x, a mozgas amplitidé-
ja, @ pedig a fazisa.

A kvantumvilagban a harmonikus oszcillator, ahogy
szamtalan mds rendszer a nanométeres skilan, kvantalt
tulajdonsagokat mutat. Ez példdul abban nyilvanul meg,
hogy amikor az oszcillator energidjat megmérjiik, csak
bizonyos diszkrét energiaértékeket kaphatunk. Ehhez
ugy jutunk el, hogy a fizikai mennyiségeket, példaul az
energiat, az impulzust vagy a helykoordinatat, operato-
rokkal irjuk le, és megkoveteljiik, hogy a mérhet6 fizikai
mennyiségek csak olyan értékeket vegyenek fel, amelyek

H(x, p)= +%kx2.

sajatértekei a megfelel§ operatoroknak. Emellett a rend-
szer allapotat egy hullamfliggvény képviseli, ami annak
a valdszinliség-eloszlasat irja le, hogy példaul a részecske
egy adott helyen talalhat6, vagy egy adott impulzussal
rendelkezik. Fontos megjegyezni, hogy amikor a kon-
jugalt fizikai mennyiségeket lekepézziik operatorokra,
ezek az operatok nem cserélhetéek fel. Matematikailag
az operatorok definidlasakor a klasszikus Poisson-zard-
jelekre vonatkoz6 Osszefliggéseket a kvantumos felcse-
rélhet8ségi relaciokra valtjuk:

1
!

ahol 7 a redukalt Planck-allandé. Az egyik leghiresebb
példa nem felcserélhet6 operatorparra a helykoordind-
ta és az impulzus, amelyek teljesitik a Heisenberg-féle
felcserélési relaciot, [£, p] = £p - p& = ih. A kvantum-
rendszerek leirasanak ezt a megkozelitését, ahol a klasszi-
kus fizikai mennyiségeket nem felcserélhet6 kvantumos
operatorokkal helyettesitjiikk, kanonikus kvantalasnak
nevezzik.

Visszatérve a harmonikus oszcillator példajara, a ka-
nonikus kvantalassal a rendszert a Hamilton-operator
irjale:

2
a=2 1l
2m 2

Ahhoz, hogy megkapjuk a rendszer kvantilt ener-
gia-sajatallapotait, a Hamilton-operator sajatértekeit kell
megkeresniink. Szerencsére ez a feladat analitikusan meg-
oldhaté (ahogy az minden bevezet§ kvantummechanika-
tankonyvben szerepel), ami arra vezet, hogy az energia
megengedett E, értékei linedrisan nének az n gerjesztési
szam fliggvényében:

b)
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1. dbra. a) Az LC rezgdkor kapcsolasi rajza és az energia-sajatallapotok hullamfiiggvényei a V(¢) négyzetes potencialvolgyben. Az energiaallapotok
egyenl6 tavolsagra vannak egymastdl (piros nyilak). b) A transzmon dramkor kapcsolasi rajza és az energia-sajatallapotok hullimfiiggvényei a 1(¢)
= —E;cos(2n ¢/ ¢$,) potencialvolgyben. Az alap- és az elsé gerjesztett dllapot reprezental egy qubitet (piros négyzet). c) A Josephson-dtmenet sema-
tikus rajza, ahol Cooper-parok (2¢) alagutaznak a szupravezet6 elektrodak kozott egy szigetelorétegen keresztiil. d) A transzmon hullamfiiggvényei
toltésreprezentaciéban. e) Pasztazé elektronmikroszkopos felvétel egy Josephson-atmenetrdl, amely két oxidalt aluminium elektréda kozott alakul
ki (piros kor). f) Optikai mikroszképfelvétel egy transzmon qubitrdl [4], ahol a piros kor jelzi a Josephson-atmenetet
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E, = ha)[n +lj
2

A szupravezet6 harmonikus LC rezgékor

Rezgémozgas nemcsak mechanikai rendszerekben van
jelen, hanem elektromos aramkordkben is. Az alapvetd
példa erre a parhuzamos kapcsolasi LC rezg6kor dina-
mikaja, ahol egy kondenzator és egy tekercs periodiku-
san energiat cserél egymassal (Ia. dbra). A klasszikus
rendszer energidja (Hamilton-fiiggvénye) elektromos és
magneses energiabol all:
2 2
1) =2+ L
2C 2L

ahol C a kondenzdtor kapacitdsa, L a tekercs indukti-
vitasa, Q az elektromos toltés a kondenzatoron és ¢ a
tekercsben tarolt magneses fluxus. Az LC rezgékor
dinamikdja anal6ég a mechanikai oszcillatoréval: az elekt-
romos toltés és a magneses fluxus nagysaga harmoniku-
sanrezeg az aramkorben, mint ahogy a rugéhoz erdsitett
részecske pozicidja és impulzusa is szinuszosan valtozik.
Ez matematikailag abban nyilvanul meg, hogy a mecha-
nikus és az elektromos oszcillitor Hamilton-fliggvényei
lekepézhetéek egymasba a kovetkezd helyettesitéssel:
peQ, x—¢, me—C, k—1/L. Tovabba lathato, hogy az
elektromos t6ltés és a magneses fluxus konjugélt fizikai
mennyiségek, mivel {¢, Q} = 1.

A mechanikus és elektromos oszcillatorok hasonlésa-
ga arra motival, hogy egy kvantumos LC rezg6korben a
fluxus és a t6ltés mennyiségeket is operatorokkal irjuk le,
melyek ugyanolyan felcserélési relaciot kovetnek, mint
egy részecske helyének és impulzusianak operatora [2].
Mara szamtalan kisérleti eredmény bizonyitja, hogy ez
valoban a helyes kanonikus kvantalasa a kvantumaram-
koroknek, és a toltés- és a fluxusoperatorok kielégitik a
kovetkez6 felcserélési relaciot:

[¢, Q] =ih.

Ezen a ponton egy fontos kérdés vetddik fel. Hogyan
tudunk kisérletileg kvantumos LC aramkort épiteni? Ez
elsére lehetetlen feladatnak tiinik. A kondenzator és a
tekercs is megszamlalhatatlan sok atombdl épiil fel, ame-
lyek kozott a globalis faziskoherencia hidnyzik. Enélkiil
pedig a kvantumos effektusok nem terjednek ki az egész
aramkorre, és a toltések oszcillacidja csupan klasszikus
jelenség marad. Szerencsére, a szupravezet6 anyagok
megoldast kindlnak erre a problémara. Bar a szupra-
vezetSk leginkabb arrdl hiresek, hogy ellenallas nélkiil
vezetik az elektromos dramot, van egy masik fontos tu-
lajdonsaguk: egy szupravezet6 anyagdarab vezetést add
elektronjai egyetlen makroszkopikus hullimfiiggvény-
nyel irhatok le. Ez a globalis hullamfiiggvény biztositja,
hogy ha szupravezetbdl épitiink egy LC oszcillatort, és
lehitjiik alacsony hémérsékletre, akkor a faziskoheren-
cia az egész aramkorre kiterjed. Ennek kovetkeztében
a rezg6kor kvantumos effektusokat mutat, igy példaul
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a megengedett energiaértékei egy ekvidisztans spekt-
rumot adnak (Ia. dbra). Mivel nemcsak az dram, hanem az
elektromagneses mez6 is oszcillal az LC dramkorben, az
energiaértékek kozotti gerjesztéseket fotonoknak hivjuk,
amelyek az elektromagneses sugarzas elemi részecskéi.

A transzmon: egy anharmonikus
LC rezgdkor

Bar a szupravezet6 LC aramkornek kvantalt energia-
szintjei vannak, ez nem elég ahhoz, hogy kvantumsza-
mitégéphez kvantumbitet (qubitet) épithessiink beldle.
A qubit ugyanis vezérelhetd kétallapotd kvantumrend-
szer kell legyen. A harmonikus rezgékorben végtelen
szamu energia-sajatallapot van, rdadasul mindegyik
energiaszint ugyanakkora tavolsigra van a szomszéd-
jaitol, ezért nem tudunk elkiiloniteni csupan két ener-
giaszintet. Kézenfekvé megoldas erre, ha a rezgékort
anharmonikussa tessziik. A mechanikai oszcillatornal
ehhez olyan rugé kell, melynek rugéallandéja a meg-
nyujtasatol fliggben valtozik. Hasonldan, az elektromos
LC rezgékorben nemlinedris tekercsre van sziikség,
amelynek induktivitasa a benne tarolt fluxustol fiigg. Ha
ez megvan, a klasszikus rezgés torzul az eredeti tisztan
szinuszos mozgashoz képest, a kvantumos esetben pedig
az energiaértékek mar nem egyenld tavolsagra lesznek
egymastol (1b. dbra). gy a végtelen szamu allapot koziil
mar ki tudunk valasztani két tetsz6leges energiaszintet,
amelyek egy qubit 0 és 1 allapotat adjak. A legegyszeri{ibb
megoldas az alapallapotot a qubit 0 allapotanak, az els6
gerjesztett dllapotot a qubit 1 allapotanak tekinteni.

Hogyan tudunk nemlinedris szupravezet6 tekercset
késziteni? Erre a valaszt egy szupravezetdjelenség szol-
galtatja: a Josephson-effektus. Ez akkor 1ép fel, amikor
két szupravezet6 elektrédat egy néhany nanométer szé-
lességi szigetel6réteg valaszt el egymastdl, és a lecsengd
szupravezetG-hullamfiiggvények atfedésbe keriilnek a
szigetelorétegben (Ic., e. dbra). Ekkor a Cooper-parok
alagutazasa révén szupravezetd aram folyik a két elekt-
roda kozott, a szigetel6rétegen pedig fesziiltség 1ép fel.
Ez a fesziiltség aranyos az aram id6beli valtozasaval,
éppen ugy, ahogy egy tekercs fesziiltsége a rajta atfolyo
aram idG6beli derivaltjaval aranyos. Ezt a szupraveze-
t6-szigetel6—szupravezetd rendszert tehat egy effektiv
tekercsként kezelhetjiik, amit Josephson-atmenetnek
neveziink. Err6l az dramkori elemr6l megmutathato,
hogy az induktivitiasa nemlinedris a benne tarolt ¢ effek-
tiv magneses fluxus fliggvényében, és a tekercs energidja
E = -E;cos(2n¢/¢,), ahol E; a Josephson-energia, ami
a Josephson-atmenet anyagatol és geometriajatdl fiigg,
és ¢, a magneses fluxuskvantum.

Amikor egy ilyen Josephson-atmenetet és egy szup-
ravezet6 kondenzitort parhuzamosan kapcsolunk,
anharmonikus rezgékort kapunk, amit transzmon
dramkornek hivnak [3, 4]. Ezzel a rendszer Hamil-
ton-operatora:
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ahol - a mechanikai példat kovetve — az els6 tagot a
ykinetikus”, mig a masodik tagot a ,potencialis” ener-
giaként tekinthetjiitk. Az aramkor kvantalt energia-
szintjeit, potencialis energidjat és az allapotok hullam-
figgvényeit az 1b. dbra, mig a transzmon aramkor egy
legyartott példanyat az If. dbra mutatja [4]. Lathato,
hogy a rendszer enegiaértékei nem egyenletesen oszla-
nak el, mivel a koszinuszos potencial eltér a négyzetes
figgvénytdl.

Erdemes megjegyezni, hogy a hullimfiiggvénye-
ket leirhatjuk akar fluxus-, akar t6ltésreprezenticidban,
ahogy egy részecske allapota is pozicié- és impulzus-
reprezentacioban is dbrazolhat6. A hullamfiiggvények
a toltésreprezenticiéban fontos fizikai intuicidval szol-
galnak: a transzmon energiadllapotai kiilonb6z6 tol-
tésoszcillaciok koherens szuperpozicioéi (1d. dbra). Pél-
daul az alap- és az els6 gerjesztett allapot esetén néhany
Cooper-par oszcillal az aramkorben gy, hogy az alap-
allapotban szimmetrikus, a gerjesztett allapotban pedig
antiszimmetrikus amplitidéval rezegnek. Mivel ez a kap-
csolas egy egyszerd aramkor, amit mara a legtobb tiszta-
szobaban gyartani lehet, a transzmon az egyik legelter-
jedtebb szupravezetd qubit mind a kiilfoldi, mind a hazai
egyetemeken [5], kutatéintézetekben és a kvantumos
iparban. Példaul a legigéretesebb szupravezet6 kvantum-
processzorok, amelyeket a Google, az IBM vagy az Ama-
zon gyart, mind transzmon aramkorokbdl épiilnek fel.

A flux6nium: az dramok szuperpozicidja

A 2010-es évek hajnalan kifejlesztettek egy masik, sokat
igéro szupravezetd qubitfajtat, a fluxéniumot [6]. Itt a Jo-
sephson-atmenettel nemcsak egy kondenzatort, hanem
egy (hagyomadnyos, linearis) tekercset is pAirhuzamosan
kapcsoltak. Mivel ebben az dramkdrben a linearis te-
kercs is energiat tarol, a rendszer Hamilton-operatorat
a kovetkez6képpen tudjuk leirni a (ha nincs kiilsé mag-
neses tér):

Energia

E;

9 1 0 1 9
() [t’.')[}]

2. dbra. A fluxénium dramkor energia-sajatallapotaihoz tartozé hullim-
fuggvények kiils6 magneses tér eseten. A sziirke gorbe mutatja a poten-
cidlis energiat. A betétidbra mutatja a fluxénium kapcsolasi rajzat

A

12
H :(22—0— E]cos(2n¢/¢0)+f—L.

2

Itt az aramkor potencidlis energidja (az utolsé két
tag) lényegesen kiilonbozik a transzmonnal latottol:
tobb potencidlminimum is van, ahol a hullamfiiggvények
lokalizal6dhatnak (2. dbra). Tehat a flux6nium nemcsak
egy anharmonikus rezg6kor, hanem egy gazdag energia-
struktiraval rendelkezd mesterséges atom, ahol az
atom potencialis energidjat az induktivitasok, valamint
kinetikus energidjat a kapacitds értéke hatirozza meg.
Megmutathat6, hogy a kiilonb6z6 potencialvolgyekben
talalhat6 allapotok fizikailag kiilonb6z6 nagysdgi mak-
roszkopikus koriaramokat jelentenek a rendszerben.
Ennek egyik jelentsége, hogy a fluxéniumban a qu-
bitallapotok kiilonb6z6 makroszkopikus 4aramokhoz
tartoznak. Ezek a makroszkopikus, de mégiscsak kvan-
tumos aramok jobban ellenallnak a lokalis zajnak, mint
mas kvantumhardverek, igy kevesebb hibat varunk az
altaluk megvaldsitott fluxéniumqubitekben, ami igére-
tes a kvantumszamitégépek szamara.

Vi#, o)

c) o

d)

3. dbra. a) Optikai mikroszkdpfelvétel a védett 0-m dramkorr6l, és a kapcsolasi rajza [9]. JJ: Josephson-dtmenet, JJA: tekercs. b) Az dramkor kétdi-
menzids potencialis energidja, c) az alap- és d) az elsé gerjesztett dllapotinak hullimfiiggvényei, amelyek két kiilonb6z6 potencidlvolgyben lokaliza-

l6dnak, igy koztiik az dtmenet tiltott
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Magasabb dimenzi6ju és védett
aramkorok

Eddig csak a legegyszer(ibb aramkoroket targyaltuk,
ahol a rendszereknek csak egy szabadsagi fokuk volt (a
Hamilton-operator egyetlen toltés-fluxus konjugalt part
tartalmazott), igy ezek az aramkorok egydimenzids mes-
terséges atomoknak tekinthet6ek. Ha nemcsak parhu-
zamosan, hanem sorosan is kapcsoljuk a szupravezetd
elemeket, tobb szabadsigi foku (magasabb dimenzios)
kvantumaramkoroket is tervezhetiink. Ahogy szdmtalan
kisérleti eredmény bizonyitja, ezeknek az dsszetettebb
rendszereknek a kvantéaldsa is a kanonikus kvantalast
koveti. Az altalanos elméleti eljaras a kvantummechani-
kaileirasukra a kovetkezd [7]. E16szor definialjuk a toltést
és az altalanositott fluxus mennyiségeket az dramkor
kiilonb6z6 részein, mint az aram és a fesziiltség id6-
beli integraljait. Ezt kovet6en megkeressiik a kanonikus
toltés-fluxus parokat az dramkorben, amiket az Aramkor
geometridja és grafja hataroz meg, és ezt egy Gn. szimp-
lektikus matrixszal irjuk le. Ezt kdvet6en a toltéseket
és fluxusokat operatorokkal helyettesitjiik, amelyek fel-
cserélési Osszefliggéseket elégitenek ki. Végiil felirjuk az
aramkor Hamilton-operatorat, aminek sajatértékei adjak
az aramkor lehetséges energiaértékeit, sajatfiiggvényei a
hullamfiiggvényeket.

Mivel dramkori elemeket megszamlalhatatlan kom-
biniciéban tudunk 0&sszekapcsolni, rengeteg magas
dimenzidji mesterséges atomot lehet tervezni szupra-
vezet§ aramkorokbdl. A kvantumszamitoégépek szem-
pontjabol egy kiilondsen fontos irdny az un. védett
aramkorok tervezése [8]. Ezen dramkorokben egyes sa-
jatallapotok ellenalléak a kornyezeti zajjal szemben, igy
ezekkel hosszi élettartamid qubitet tervezhetiink, ha-
sonléan a metastabil atomi allapotokhoz. Péld4ul az dn.
0-mt qubitben [9] a kondenzatorok, a linedris és nemline-
aris induktivitasok ugy kombinalédnak, hogy egy kettds
potencialvolgy jon létre, ahol a qubit allapotai stabilan
lokalizalédhatnak (3. dbra).

A kvantumaramkorok elektrodinamikaja
és a kvantumszimuldcio

Amellett, hogy az dramkordknek kvantalt energiaalla-
potaik vannak, még sok mds kvantumos effektust is mu-
tatnak, igy kvantumszimulatorok alapjaul szolgalhatnak
[10]. Péld4ul a fotonok és atomok kozotti kolcsonhatas,
a kvantumelektrodinamika is nagy pontossaggal tanul-
manyozhatd ezen kapcsolasokkal [11]. Amikor harmo-
nikus és anharmonikus dramkoroket kapcsolunk 6ssze,
az LC dramkor gerjesztései — a fotonok - az anharmoni-
kus dramkor (a qubit) atomi allapotaival hatnak kdlcson.
Ekkor, ha az LC aramkor rezonanciafrekvencidja meg-
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egyezik a qubit energiadtmenetével, a foton energiat tud
cserélni a qubittel. Ez a kvantumszamitégépek nyelvén
egy logikai miiveletnek felel meg, és a kolcsonhatas ide-
jét valtoztatva a qubit 0 és 1 allapotainak tetsz6leges
szuperpozicidjat eredményezi. Ha a fotonok energidja
a qubit atmenetének energiajatdl eltér, a kdlcsonhatas
ahhoz vezet, hogy a fotonok frekvencidja kissé meg-
valtozik attol fliggben, hogy a qubit a 0 vagy 1 allapot-
ban van, ami a qubitek kiolvasasianak az alapja. Emellett
nagyszamu osszekapcsolt aramkorrel szilardtestfizikai
racsmodellek szimuladlhaték, ami pl. a Mott-szigetel6k
[12] vagy a hiperbolikus gorbiilt térben mozgd fotonok
kisérleti vizsgalatat is lehet6vé teszi [13] - hogy csak
néhany példat emlitsiink a kvantumaramkorok sokrétd
alkalmazdsai koziil.
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KIHIVASOK A VARIACIOS KVANTUMARAMKOROK

OPTIMALIZALASABAN

A kvantumos gépi tanulds napjaink rohamosan fejl6dé és
névekvo tudomanyteriilete, amely 6tvozi a kvantumin-
formatika és a klasszikus gépi tanulds elveit Osszetett
problémak megoldasinak reményében. A kvantumsza-
mitas két Gjszerd er6forrassal boviti a matematikai prob-
lémak megoldéasara alkalmazhaté eszk6zok tarat. A szu-
perpozici6 és az Osszefonddis lehet6vé teszik a
kvantumszamitégépek szamara, hogy olyan médon dol-
gozzak fel az informacidkat, amely alapvet6en kiilonbo-
zik a klasszikus szamitogépektdl [1, 2]. A kvantumos gépi
tanulds teriiletén tevékenykedd kutatok ezen er6forrasok
legjobb felhasznaldsi mdédszerein munkalkodnak a gépi
tanuldsi algoritmusok teljesitményének javitasa érdeké-
ben. A klasszikus gépi tanulds teriiletén alkalmazott
algoritmusokban nagy komplexitdsi matematikai mo-
dellek hiperparamétereit (mas néven sulyait) azzal a cél-
lal optimalizaljuk, hogy pontos elérejelzéseket kapjunk
vagy elemeket osztalyozzunk. A kvantumos gépi tanulas
soran a matematikai modellekben kvantumos eréforra-
sokat alkalmaznak olyan célfiiggvények kiértékelése
végett, melyeket klasszikus mddszerekkel tal sok erd-
forrasba (pl. idébe) keriilne kiértékelni, ahogy ezt az
1. dbra szemlélteti.

Kvantumhardver . i
A gépi tanulds
f— A s célfiiggvénye
(O (8 ) F (80}
\ Klasszikus
— | | optimalizacié
— 0

1. dbra. A kvantumos gépi tanulds soran kvantumos eréforrasokat al-
kalmazunk a gépi tanulas célfiiggvényének hatékony kiértékeléséhez. A
kvantumos eszkdz paramétereit klasszikus szamitasi eszkozokkel opti-
malizaljuk

A kvantummechanika egyediilall6 tulajdonsagait ki-
hasznalva hatékonnya valhat ezen célfiiggvények kiérté-
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kelése. A szuperpozici6 (azaz a kvantumbitek 0 és 1 4lla-
potainak egyidejii megnyilvanulasa) és az 6sszefonddas
(azaz a kvantumbitek kozott fellépé kvantummechani-
kai korrelacidk) lehetéséget nyujtanak az informacié
taroldsara alkalmazott er6forrisok exponenciilis mér-
tékl tomoritésére, jelentésen megnovelve kezelésiik ha-
tékonysagat. A klasszikus gépi tanulas folyamata 4ltala-
ban a neuralis halézatok sudlyainak bedllitasat jelenti
annak érdekében, hogy minimalizaljuk a matematikai
modell és a tanité adatok kozotti eltéréseket. E folyamat
analdgidjaként a kvantumos gépi tanulas soran a tanitasi
folyamat a kvantumprogramot leiré kvantumaramkor-
ben 1év6 kapumiiveletek [3] finomhangolasat t{izi ki cé-
lul. A kvantumaramkorokben 1évé kapumiveletek az
egyes kvantumbiteken (azaz egyszerre egy kvantum-
biten) vagy kvantumbitparokon hatnak. Ez utébbi két-
kvantumbites miveletek kvantumos korrelaciok létreho-
zasara alkalmazhat6ak a kvantumbitek kozott.

R
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— £ klasszikus
\P a3 5
bit bit

2. dbra. Bal oldal: négy kvantumbites kvantumaramkor. A ¥ kvantum-
allapotot alkot6 négy kvantumbitet egykvantumbites kapuk (lila négy-
zetek) és kétkvantumbites kapuk (kék) transzformaljak balrél jobbra
terjed6 sorrendben. Jobb oldal: a klasszikus bit kvantumos éaltalinosita-
sa. A kvantumbit a 0 és 1 allapot tetszGleges szuperpozicidjat felveheti,
mely allapot egy egységnyi sugart gomb (Bloch-gémb) feliiletére muta-
t6 vektorral szemléltethetd

Ahogy azt a 2. dbra szemlélteti, az egykvantumbites
kapumfiveletek a kvantumbitek olyan transzformaciéjat
hajtjak végre, mely a kvantumbitek allapotdnak szemlél-
tetésére alkalmazott egységnyi hairomdimenzids vektor
elforditasaval irhat6 le. A kvantumaramkor tanitasa eb-
ben a kornyezetben a kvantumkapuk forgatasi szogeinek
beallitdsat jelenti annak érdekében, hogy a kvantum-
aramkor altal generalt kvantumallapotbdl kinyerhet6
mennyiségek kozel keriiljenek a tanitasi adathalmaz
megfelel$ elemeihez. A kvantumkapuk forgatasi szogei-
nek beallitasi folyamata hasonl6 a klasszikus neuralis ha-
l6zat sdlyainak tanitdsahoz.

A kvantumos gépi tanulasos modellek koziil a variaci-
s sajatérték-megoldot (variational quantum eigensolver,
VQE) jelent6s érdeklédés ovezte az elmuilt két évtized-
ben. A VQE a variacios elvet hasznalja kvantumos rend-
szerek alapallapoti energidjanak meghatarozasara, amely
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a kvantumkémia és az anyagfizika alapvet6 probléméja.
A probléma megoldasara alkalmazott hagyomadanyos
moédszerek a pontossag és a hatékonysag korlataival ke-
rillnek szembe, mivel a meghatarozni kivant kvantum-
allapotok kezelése exponencialisan novekv6 klasszikus
szamitasi kapacitast igényel. A VQE algoritmus megol-
dast nyujthat e korlatok lekiizdéséhez, ezért ez az egyik
legigéretesebb alkalmazds a kvantumszamitassal jard
elény demonstralasara, akar zajosan miik6d6 hardveren
is. Ahogy a neve is sugallja, a VQE célja egy olyan kvan-
tumrendszer alapallapotanak kozelitése, amelyet a klasz-
szikus hardver segitségével nehéz implementalni. Ennek
soran fels6 korlatot adhatunk az alapéllapoti energiara,
idealis esetben nagyon kozel keriilve az egzakt megoldas-
hoz. A gyakorlati megvaldsitasban a kvantumallapot egy
kvantumaramkorrel allithaté el6, és a VQE algoritmus a
kvantumaramkor megfelel6 paramétereinek beallitasat
tlizi ki célul egy optimalizacioés folyamat aran. Az opti-
malizalasi folyamat sordn a kvantumaramkor paramé-
tereit iterativ modon frissitjiik a konvergencia bealltaig.
Ezért a klasszikus optimalizdlasi algoritmus kivalasztasa
dont6 szerepet jatszik az algoritmus eredményességében.
A VQE lehetséges alkalmazasi teriiletei nagyon szerte-
agazdak, beleértve a gydgyszerkutatast, anyagkutatast,
kémidhoz kotheté mérnoki tervezd kutatdsokat, kvantu-
mos optimalizacidt és egyéb kvantumos gépi tanulasos
alkalmazasokat.

A VQE-hez hasonlé kvantumalgoritmusok tekinte-
tében a kvantumos elény demonstralasanak érdekében
az irodalom négy elsédleges kutatasi teriiletet emel Kki.
Ezek célja az i) optimadlis mérési technikak kifejlesztése,
ii) parhuzamositiasi modszerek létrehozdsa tobb kvan-
tumszamitégép bevondsaval, iii) a tanitas soran fellép6
eltind gradiensekkel kapcsolatos lehetséges kihivasok
kezelése és iv) a hibacsokkentési mddszerek feltirdsa,
melyre az angol nyelvl irodalomban error mitigation
néven hivatkoznak.

Sajat kutatasi munkankban a iii) kutatasi teriilet cél-
kitGizéseivel foglalkoztunk, amely az angol nyelvi iro-
dalomban barren plateau-ként emlegetett, azaz a lapos
paramétertér problémdjanak megoldasat célozza meg. A
lapos paramétertér annak a jelenségnek a kovetkezmé-
nye, hogy a kvantumos modellben a kvantumbitek
szamanak novekedésével exponencidlisan csokken a
célfiggvény gradiense. A lapos paraméterteriileteket
mutatd célfiiggvények esetében exponencidlisan sok
mérésre lehet sziikség a gradiensalapi optimalizalas so-
ran. Ez a skalazasi kihivas nemcsak a gradiensalapu opti-
malizalasra érvényes, hanem a gradiensmentes optima-
lizalasi modszerekre is, és megoldatlan kihivas marad
még a magasabb rendli optimalizalasi technikak alkal-
mazdsa esetén is. Szdmos moédszert javasoltak mar a
lapos paramétertér problémajianak kezelésére. A korai
kutatasi kezdeményezések a platok megkeriilésére ira-
nyuld stratégiakra 6sszpontositottak az algoritmusok ini-
cializdlasi szakaszdban. Mas munkdk a kvantumaram-
korok rétegenkénti optimalizalasat javasoltak, mig egyéb
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munkak egy véletlenszerd ,kapuaktivalason” alapulé
modszert alkalmaztak, hogy fokozatosan lehessen no-
velni a kvantumaramkor kifejezéképességét. Uj szemlé-
letmé6dot hozott, amikor megmutattak, hogy platéokat
indukalhat a kvantumos 6sszefon6das, de akar a zaj is.
Fontos kiemelni, hogy a javasolt médszerek elsésorban
arra Osszpontositanak, hogy elkeriiljék a platok kiala-
kulasat. Jelenleg nem létezik olyan ismert modszertan,
amely képes lenne az optimalizalasi folyamatot hatéko-
nyan elvezetni a platok kozott.

SQUANDER: Sequential Quantum Gate Decomposer

7 .
- / "\.\ IR
s . e
s e / N\ Kvantumos gépi
5 , LY tanulds
Kvantumkfip u Allapotpreparélds 1Y
felbontés

Evolicios és gradiensalapt

optimalizitorok

3. dbra. Az Eotvos Lorand Tudomanyegyetem és a HUN-REN Wigner
Fizikai Kutatokozpont éltal fejlesztett SQUANDER programcsomag
felépitése [1]

A problémat sajat kutatdsaink keretein beliil is meg-
vizsgaltuk. Az Eotvos Lorand Tudoméanyegyetem és a
HUN-REN Wigner Fizikai Kutatokdzpont altal fejlesz-
tett SQUANDER programcsomagban (3. dbra) imp-
lementalt wjszer optimalizalasi algoritmusunk jelen-
tésen jobb hatékonysagot mutatott a VQE probléma
megoldasa soran a hagyomanyos optimalizal6 algorit-
musokkal szemben. A SQUANDER nyilt forraskodu
programcsomagot a GitHub kozosségi megosztd plat-
formon tettiikk elérhetové a felhasznalok szamara [1].
Megmutattuk, hogy a koltségfiiggvény hossza skaldju
tulajdonsagai felhasznalhatéak az optimalizalasi irany
(melyet altalaban a gradiens irdnya hatidroz meg) és a
vonalkeresési tavolsag meghatirozasira. Modszeriink
egy Uj vonalkeresésen alapul6é megkdozelitést valdsit meg
a kvantumdramkorok tanitdsa soran. Ezt Ggy érjik el,
hogy effektive csokkentjiik a tanitandé kvantumaram-
kor kifejez6képességét azzal, hogy az egyes iteraciok az
optimalizalasi paramétereknek csak egy kisebb részhal-
mazat frissitik. A hagyomanyos gradiensalapt optimali-
zalasi megkozelitésekkel dsszehasonlitva — mint példaul
a gradiensereszkedés vagy a gépi tanulas soran gyakorta
alkalmazott ADAM algoritmus - optimalizalasi meg-
kozelitésiink hatékonyabbnak bizonyult az optimalizala-
si folyamat els6 szakaszaban; itt a mi modszeriink jelen-
t6sen nagyobb javuldst mutatott a célfiiggvényben - sét,
kevesebb célfiiggvény-kiértékeléssel ért el nagyobb ja-
vuldst. A mdédszer matematikai hatterének részleteit egy
korabbi publikaciénkban mutattuk be [2]. A kifejlesztett
optimalizalasi stratégiank hatékonyan csokkentette a
VQE célfiiggvényét tobb ezer iteracié alatt anélkiil, hogy
a platok csapdajaba esett volna, ahogy ezt a 4. dbra szem-
1élteti.

A 4. abra numerikus szimulaciéink eredményeit mu-
tatja be, melyeket egy véletlenszeriien megkonstrualt
Heisenberg-modell alapallapotanak becslése végett foly-
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4. dbra. Kiilonboz6 gradiensalapu és gradiensmentes optimalizal6 el-
jarasok hatékonysaga (az alapéllapoti energia kozelitése a célfiiggvény-
kiértékelési iteraciok szamanak fiiggvényében). Az optimalizilds célja
egy véletlenszer( 16 kvantumbites Heisenberg-modell alapallapotdnak
meghatdrozasa

tattunk. A Heisenberg-modell, amely a spineken haté
spinoperatorokkal irhat6 le, a kvantumos rendszerek leg-
altalanosabb formajat allitja elénk, amelyeket egy kvan-
tumbit-alapti kvantumprocesszoron meg lehet valosita-
ni. A spinek kozott fellépd, magneses alapokon nyugvé
kolcsonhatasokat tobbnyire a spinek egymas kozti tavol-
saga hatarozza meg. Pozsgay Baldzs a Fizikai Szemle je-
len példanyaban megjelent, az integralhaté modellekrél
520616 cikkében részletesen ir a Heisenberg-modell mate-
matikai megfogalmazasarol lancok mentén elhelyezkedd
spinek esetében, ahol a koélcsonhatisok a szomszédos
spinek kozott 1épnek fel. Ez a kép tovabb altalanosithatd,
ha a spinek a térben véletlenszer(ien helyezkednek el. Eb-
ben az esetben parok helyett egyszerre tobb spin is kol-
csonhatasba léphet egymassal. A 4. dbrdn szemléltetett
eredményeink olyan esetre vonatkoznak, amikor a spi-
nek kozelségébdl kifolydlag spinharmasok kozott 1épett
fel kolcsonhatas. A véletlenszertien kivalasztott spineken
definialt Heisenberg-modellt nehéz szimulalni klasszikus
eszkozokkel. Mivel jelenleg még nem allnak rendelke-
zéslinkre kell6en alacsony zajszinti kvantumszamito-
gépek, a vizsgalt kvantumaramkoroket a SQUANDER
programcsomagban elérheté nagyteljesitményl kvan-
tumszamitogép-szimulator felhasznaldsdval tanitottuk.
Az 4j optimalizdlasi technika hatékonysaganak felméré-
séhez szandékosan kizartunk minden zajforrast az aram-
korok szimulacidjabol, és tokéletes méréseket feltételez-
tlink a kvantumbiteken. Ez a megkozelités lehet6vé tette
szamunkra, hogy kifejezetten a kifejlesztett optimalizalo
modszer teljesitményének vizsgalatira 6sszpontositsunk
a munkank soran.

A 16 kvantumbites rendszer elemzése soran identi-
tasoperatorokkal inicializaltuk az optimalizalast (azaz
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nulla forgatasi paraméterekkel kezdjiik az optimaliza-
last), lehet6vé téve a koltségfiiggvény meredek csokke-
nését, ahogyan azt a 4. dbra mutatja. Osszehasonlita-
sunk azt mutatja, hogy a gradiensalapi optimalizalok
jelentésen alacsonyabb hatékonysigot mutatnak a 16
kvantumbites probléma megoldasaban. Ezzel szemben
az altalunk kifejlesztett optimalizdlasi médszer fenn-
tartja hatékonysagat az iteraciok els6 negyedében, gyor-
san megkdzelitve az optimalizalas célértékét, ahogy azt
a kék vonal mutatja a 4. 4brdn. Meg kell azonban emli-
tenlink Michael Powell gradiensmentes optimalizalasi
modszerét is, mivel megkodzelitésiink hasonlosagokat
mutat ezzel a mddszerrel. Ebbdl kifolydlag a Powell op-
timalizaldsi moédszerével végzett numerikus kisérletek
nagyon kozel keriiltek eredményeinkhez. A mi megko-
zelitésiink azonban két szempontbdl milja feliil Powell
modszerét. El6szor is, az altalunk kifejlesztett modszer
a tanitand6 kvantumaramkort leiré matematikai modell
analitikus tulajdonsagaira tdimaszkodva allapitja meg az
optimalizalasi iranyt, az optimalizalandd célfiiggvény
figgvényalakjahoz igazodva. Ezzel szemben Powell
moébdszere altalanos elvekre tamaszkodva, iterativ mo-
don hatdrozza meg az optimalizdlasi irdnyt, az el6z6
iteracié soran kinyert eredmények alapjan, nem pedig a
célfiiggvénybdl kinyerhet6 informaciok alapjan. Masod-
szor, Powell mddszerével ellentétben megkozelitésiink
parhuzamosithat6 (az optimalizdlasi iranyt parhuzamo-
san kiértékelhet6 mennyiségek hatarozzak meg), jelen-
tésen leréviditve a kvantumaramkor tanitasahoz sziik-
séges id6t. Sajnos numerikus kisérleteink nem tudtak
pontosan reprodukélni a keresett alapallapotot. Ez azzal
magyarazhatd, hogy az alkalmazott kvantumaramkor -
annak alulparaméterezettségébdl kifolydlag — nem fel-
tétleniil alkalmas minden tetszéleges kvantumallapot
el6allitasara.

Annak érdekében, hogy megértsiik az altalunk ki-
fejlesztett optimalizalasi mddszer sikerét megalapoz6 té-
nyezOket, 6sszehasonlitjuk azt a gradiensalapd optimali-
zalokkal. Sajnos a paramétertér magas dimenzidja nem
teszi lehet6vé a jelenség explicit vizsgalatat, ezért csupan
kvalitativ magyarazattal szolgalhatunk. Az egyes itera-
cidkban az optimalizialandé paraméterek kis részhalma-
zanak kivalasztasaval a kvantumaramkor kifejezéképes-
sége effektive csokken, hatékonyan mérsékelve ezzel az
optimalizalas platéra jutasinak kockazatat, amennyi-
ben platémentes teriiletrdl inditjuk az optimalizalast.
Egy alacsony kifejez6képességli kvantumaramkor opti-
malizalasaval a képzési folyamat minden iteracidjaban
hatékonyan elkeriilhetjiik a platdkat. Ezt a tendenciat a
gradiensalapi megoldok esetében is megfigyeltiik: az op-
timalizalds jelent6sen hatékonyabba valt, amennyiben az
Osszes paraméter helyett azok véletlenszer( részhalma-
zat frissitettiik iteracionként. A gradiensalapti megolddk
azonban igy sem értek fel modszeriink hatékonysagahoz,
mivel azok nem tdmaszkodtak az optimalizaland6 cél-
fiiggvény azon analitikus tulajdonsigaira, melyek meg-
hatarozzak a célfiiggvény hosszu 1éptéki tulajdonsagait.
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A felvazolt eljaras azonban nem oldja meg teljes
mértékben a platék problémajat, mivel a paramétertér
egy kivalasztott alterének optimalizalasa csak az adott
altérnek megfelel6 minimumot érheti el. Ha mar kozel
keriiltiink egy lokalis minimumbhoz (vagy egy platéhoz),
a célfiiggvény javulasa is kicsivé valik. Egyszerre el6-
nyo6s tehat béviteni is és csokkenteni is az iteracionként
kivalasztott paraméterek szamat. Ez a két egymassal
verseng6 szempont meghatiroz egy optimalis paramé-
terszamossagot, melyeket iteracionként optimalizalva
a leghatékonyabba vilik a VQE probléma megoldasa.
Numerikus eredményeink azt sugalljak, hogy a paramé-
terek szamossaganak 50 koriili értéke valik a leghatéko-
nyabb valasztdssd az optimalizalas soran.

Numerikus eredményeinkbdl azt a kovetkeztetést
vonhatjuk le, hogy a munkankban kifejlesztett valo-
szinliség-alapu optimalizdlé algoritmus - kihasznalva
a paramétertér hosszu 1éptékd tulajdonsigait - igére-

tes jeloltnek bizonyul a variaciés kvantumproblémak
nagyobb 1éptékd megoldasihoz, 4j lendiiletet adva a
kvantumos gépi tanulas teriiletéhez kapcsolédé kuta-
tasoknak. Modszeriinket ugyan kvantumszamitogép-
szimulator segitségével fejlesztettiik ki, azonban
mindvégig szem el6tt tartottuk annak valédi kvantum-
szamitégépen torténd alkalmazhatésdgat. Az optimali-
zaldsi modszert valédi kvantumprocesszorok alkalma-
zasaval tervezziik tovabbfejleszteni.
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KOLCSONHATO KVANTUMRENDSZEREK SZIMULACIOJA

GEPI TANULASSAL

Nagyszamu kolcsonhato test mozgasanak leirasa a klasz-
szikus fizikaban is komoly kihivas. J6l ismert példaul
(lasd Pozsgay Balazs cikkét a jelen szamban), hogy ha-
rom, gravitaciésan kolcsonhaté test dinamikdja dltala-
ban kaotikus, és nem lehet pontosan megoldani. Ett6l
fiiggetleniil a klasszikus mozgasegyenletek megoldasa-
hoz sziikséges szamitasi teljesitmény legfeljebb a testek
szamanak hatvanyaival n6, igy pl. a Naprendszer 0sszes
objektumanak dinamikdja pontosan szimulalhaté.

A kolcsonhatasok kvantummechanikai kezelése még
nagyobb kihivast jelent. A klasszikus mozgasegyenlete-
ket a Schrodinger-egyenlet valtja fel, amelynek megol-
dasai nem egyszertien a rendszer elemeinek palyai,
hanem hullaimfiiggvények, amelyek a rendszer 0sszes le-
hetséges konfiguracidjanak valészinlségét tartalmazzak.
Ennek megfeleléen a hullamfiiggvény informdcidtartal-
ma exponencialisan n6 a részecskék szamaval, igy egzak-

Szabi Attila a Ziirichi Egyetem (Universitit
Zirich) tudomanyos munkatirsa. F§ kuta-
tasi teriilete a szorosan kolcsonhat6 sokré-
szecskerendszerek elméleti és szamitogépes
modellezése, kiilonos tekintettel a magneses
anyagok kvantumos tulajdonsagaira.

272

Szabd Attila
Zurichi Egyetem, Fizika Tanszék, Zirich
E-mail: attila.szabo@physik.uzh.ch

tul, nyers er6vel csak nagyon kicsi rendszerek szimulal-
haték. A kvantumkémiai és anyagtudomanyi szimulaciok
ezt a problémat szamos kiilonb6z6 modon kozelitik meg:

o Nem tul nagy rendszerek hullimfiiggvénye tovabbra is
kiszamithatd, feltéve, hogy az informacidtartalmukat
kezelhet6 szamu paraméterbe stritjiik. Nyilvanval6an
egy megoldas sem alkalmas az Osszes lehetséges hul-
lamfiiggvény tomoritésére, igy fontos, hogy a tomo-
ritett forma ki tudja fejezni a fizikailag fontos hullam-
fiiggvényeket.

e Nagy molekuldk hullaimfiiggvény-alapi szimulalasa
nem praktikus; ehelyett kémiai viselkedésiiket az
atommagok (kozelit6leg klasszikus) mozgasabol is
levezethetjiik. Az atommagokra hat6 erdk viszont az
elektronok kvantumos mozgasanak fiiggvényei, igy
ezek hatékony kiszdmitasa tovabbra is fontos.

o A kvantumszamitégépeken és hasonlé 4j platformo-
kon végzett kisérletek nagy mennyiségi, részletgaz-
dag adatot produkélnak, amelynek teljes hasznositasa
kifinomultabb adatfeldolgozast igényel, mint a hagyo-
manyos, anyagokon végzett kisérletek.

Ebben a cikkben a gépi tanulas és kiilondsen a neura-
lis halozatok alkalmazasait jarjuk koriil a harom fenti pél-
dara, amelyek messze nem meritik ki az 6sszes lehet&sé-
get [1]; Rakyta Péter cikke a jelen szamban a gépi tanulas
kvantumszamitoégépekre val6 alkalmazasait jarja koril.
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1. dbra. Neurilis halozatok négy lehetséges alkalmazasa. a) Képfelisme-
rés: a bemenet egy kép (pixelek vilagossagértékei), a kimenet annak a
valésziniisége, hogy a kép kiilonb6z6 dolgokat abrazol. b) Neurdlis hul-
lamfiiggvény: a bemenet a rendszer szabadsagi fokainak egy konfigura-
cidja (spinek iranya, elektronok helyzete, ...), a kimenet e konfiguracié
amplitidéja a hullimfiiggvényben. c) Neurdlis potencidlfeliilet: a be-
menet egy molekula atom(mag)jainak helyzete, a kimenet a molekula
alapallapoti energidja ebben a konformaciéban. d) Fazisfelismerés: a
bemenet a rendszer pillanatnyi konfiguracidja, a kimenet annak a val6-
szintisége, hogy a rendszer kiilonb6z6 termodinamikai fazisokban van

A neuralis halézatok révid bevezetése utan latni fog-
juk, hogyan hasznalhatjuk 6ket akar hullamfiiggvények
leirasara, akar egy molekuldban az atomokra haté erék
modellezésére, akar arra, hogy kisérleti vagy szimulacids
adatokbol azonositsuk egy rendszer fazisait (1. dbra).
Mindharom példa jdl illusztrdlja, hogy a feladat fizikai
megértése — beleértve annak szimmetridit és a lokalitas
szerepét — elengedhetetlen ahhoz, hogy hatékony neura-
lis halézatokat tervezziink.

Neuralis haldzatok...

Az els6 neuralis halézatok az 1960-as években jelentek
meg a gépi tanulasban. Ezeket az emberi agyat mikod-
tet6 neuronhdlézatok inspiraltdk, ahol a neuronok elekt-
romos jeleket kiildenek egymasnak, amelyek egyiittes
hatasa donti el, hogy milyen jeleket kiildenek tovabb.
Ugyanigy, egy egyszer eldrecsatolt neurdlis hdlozat
(feedforward neural network) el6sz6r a bemenetek (pl.
egy kép pixeleinek vilagossdgértékei) linearis kombina-
cidjat veszi, majd egy f nemlinedris fliggvényt alkalmaz
rajuk:

7W=s [ZW”xj 1)
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ahol W,-](-l) egy sor optimalizalhat6é (,tanulhat6”) para-
méter. Az agy az érzékszervekbdl érkezé jeleket hier-
archikusan dolgozza fel: a ,nyers adatok” tobb agyi te-
riilleten is athaladnak, amelyek egyre magasabb szintid
informaciét vonnak ki bel6litkk. Egy mesterséges neu-
ralis hdlézatot ugyanigy kibdvithetiink tovabbi rejtett
rétegekkel, amelyek az el6z6 rétegek kimeneteit dolgoz-
zak fel tovabb:

= Zmene) ®

i

Néhany ilyen réteg utan a bemend adatokat a kivant ki-
menet formatumara (pl. annak a valdszintiségére, hogy a
kép egy kutyat vagy macskat dbrazol) hozzuk.

A halézatot ezutan tanitani kell, azaz a W paramé-
tereket ugy kell beallitani, hogy a halézat a kivant ki-
meneteket adja vissza. A legegyszeriibb megoldas az
ellendrzott tanulds (supervised learning) ahol szamos
bemenet-kimenet par mar adott. A ,tanulas” egy hiba-
fiiggvény (loss function) minimalizaldsat jelenti, amely
a halézat kimenetének a kivint kimenett6l valé eltérését
méri. A fenti ,kutya vagy macska” példdban

L=-"" logp(helyes vilasz) (3)

mintdk

egy megfelel6 hibafiiggvény: L mindig legalabb 0, ezt a
minimumot pedig akkor éri el, ha a halézat minden be-
menetre 100% valdszinliséggel a helyes valaszt adja visz-
sza. L a halézat paramétereinek fiiggvénye, igy a feladat
azok optimalizdlasa Ggy, hogy L minél kisebb legyen. A
legegyszeriibb algoritmus a gradiensleszdllds (gradient
descent). L gradiense, 0L/0 W, a leggyorsabb névekedés
iranyaba mutat, igy a paraméterek ellenkez6 iranyba 1ép-
tetésével L csokkenthetd:

W, W—ate, )
ow;
ahol @ az optimalizalas sebességét szabalyoz6 paraméter.
A gradiens sokrétegli neurdlis hdlézatokban is hatéko-
nyan kiszamithaté a lancszabaly segitségével; modern
gépi tanulasi konyvtarakban ez a folyamat mar teljesen
automatizalt.

A gépi tanulas elmult évtizedének sikerei tilnyomo-
részt annak koszonhet6ek, hogy a sokrétegi (,mély”)
neuralis halézatok tetsz6legesen bonyolult fliggvényeket
is pontosan képesek kozeliteni, mig a gradiensleszallas-
hoz hasonlé optimalizaciés algoritmusok viszonylag kis
halézatokkal is hatékonyan megtaldljak ezeket a kozeli-
téseket.

...mint hullamfiiggvények

Egy sokrészecske-hullamfiiggvény leirasa sok szempont-
bél hasonlit a fenti képfelismerési feladathoz: a rendszer
lehetséges konfiguraciéit (x) egy sor ,bemenet” (pl. az
Osszes elektron helyzete) irja le; a hullamfiiggvényt agy
definialjuk, hogy ezek minden kombinacidjdhoz egy
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Y(x) valoszinliség-amplitidot rendeliink. Sok esetben
ezek a szabadsagi fokok egy szabalyos racsot alkotnak,
akarcsak egy digitalis kép pixelei. EbbGl az analégiabdl
kiindulva a hullamfiiggvényt egy neuralis haldzattal is
leirhatjuk, amely a paraméterek optimalizalasaval ,meg-
tanulhatja” a kérdéses kvantumallapotot. Konkrétabban
egy Hamilton-operator alapallapotinak keresésénél a
hibafiiggvény szerepét a kvantumallapot energiaja, E =
(Y|H|Y), tolti be, 1évén az energia az alapallapotban a
legalacsonyabb. E és a gradiense, 0E/0 W; nem szamol-
hat6 ki egzaktul nagyobb rendszerekre, viszont megbiz-
hatéan becsiilhet6 a hullimfiiggvénybdl valé mintavétel-
lel [2], igy a gradiensleszallas hatékonyan hasznalhaté.

Ezt a moédszert el6szor magneses kvantumrendsze-
rekre alkalmaztak [3]. Az aldbbi Hamilton-operitor kii-
16n6sen sok figyelmet kapott:

H=],Y.5-5+],>.55;, (35)
() n

ahol a két 0sszeg egy négyzetracs élein és atldin fut vé-
gig; minden racspontban pedig egy erdsen fluktualé fe-
les spinoperator S; helyezkedik el. Kiilon-kiilon mindkét
tag alapallapota rendezett: az els6 tag akkor a legalacso-
nyabb, ha a szomszédos spinek ellentétes iranyba mu-
tatnak, igy az alapallapotban a spinek irdnyai sakktabla-
mintdbarendez6dnek; amasodik tag alapallapota hasonld
elven ellentétes spinti savokbdl all (2. dbra). /], = 1/2
koriil a két fazis kozti vetélkedés minden hagyomanyos
magneses rendezddést meggatol; az alapallapotot ehe-
lyett a spinek szoros kvantumos 6sszefonddasa hatarozza
meg. E koztes fazisok természete régdta nyitott kérdés és
a magas homérsékletl szupravezetdk fizikajanak megér-
tése szempontjabol is érdekes. A neuralis hullamfiiggvé-
nyek minden korabbinal jobban megkozelitik az alapal-
lapot energiajat, igy pontosabb betekintést nydjtanak a 2.
dbran lathat6 fazisdiagramba [4, 5].

Ehhez a sikerhez fontos, hogy a Hamilton-operator
szimmetridit (pl. a rdcs eltolds- és forgasszimmetriajat)
beépitsiik a neuralis halézat szerkezetébe. Ez egy Gjabb
analdgia a képfelismerési feladattal: egy kutya képét
mindig ugyanugy kell felismerni, fiiggetleniil a kutya

Osszefonodott

sakktabla .
kristaly

spin-
folyadék

2 //’1

2. dbra. A J,-J, modell (5) alapéllapoti fazisdiagramja [4]. Ha az élek
(atlok) menti kolcsonhatdsok dominalnak, az ellentétes iranyba mutaté
spinek sakktabla- (sdv-) mintiba rendez6dnek. A kettd kozti vetélkedés
magneses rendezédés nélkiili, kvantum-6sszefonddas altal dominalt at-
meneti fazisokhoz vezet. Ez az 6sszefonddds lehet rovid tava és rende-
zett (angolul valence bond solid) vagy hosszu tavi és teljesen szimmetri-
kus (spinfolyadék)

0.49 0.54 0.61
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3. dbra. Egy konvoliciés neuralis halézat (CNN) minden rejtett rétege
a bemenet geometridjara hasonlit, és a bemenet eltoldsival a kimenet
is ugyanugy tol6dik el, ezért az 6sszes kimenet 9sszege eltoldsszimmet-
rikus

helyét6l a képen. Az eltolasszimmetriat konvoliicids neu-
rdlis hdlézatok (convolutional neural networks, CNN,
3. dbra) hasznalataval garantalhatjuk: ezekben a rejtett
y® rétegek geometridja megegyezik a bemenetével, és
a W,;® paraméterek csak i és j egymashoz viszonyitott
helyzetétdl fiiggnek. Ennek eredményeként a bemenet
eltolasatdl a rejtett rétegek tartalma nem valtozik, csak
ugyanannyira eltolodik, igy az utolsé réteg elemeinek
Osszege szimmetrikus lesz. Mivel a szimmetrikus hul-
lamfiiggvények Hilbert-tere kisebb, mint minden lehet-
séges allapoté, egy szimmetrikus neuralis hal6zat gyor-
sabban és megbizhatébban tanul, és a végeredmény is
pontosabb lesz.

A neuralis hullamfliggvények kdlcsonhat6 elektronok
szimulalasara is hasznalhaték. A hullamfiiggvény szim-
metridja itt is kulcsszerepet jatszik: a Pauli-féle kizarasi
elv miatt egy elektron-hullamfiiggvény elGjele ellentétes-
re valt, ha barmely két elektron sorrendjét megcseréljik,
azaz

Y(r,.. .05,...05,..)=—¥(,...,r;,...5,...). (6)

A legtobb szimulaciés médszerben a folytonos elektron-
koordindtdkat véges szamu atomi vagy molekulapalyara
kell korlatoznunk. Ezzel szemben a neurélis hullamfiigg-
vények idealis bemenete éppen az elektronok helyzete, r;
[6]. A Pauli-elv (6) betartatasara ¥(r)-t egy altalanositott
Slater-determindnsként szamitjuk ki. A neuralis hal6zat
nem kozvetleniil a teljes sokrészecske-hullamfiiggvényt
irja le, hanem a Slater-determinénst alkot6 effektiv mo-
lekulapalyakat, amelyek a tobbi elektron helyzetére is
érzékenyek (pl. kisebb valdszintiséggel kozelitenek meg
masik elektronokat, amelyekkel elektromosan taszitjak
egymast), igy sokkal kompaktabb neuralis halézatokkal
is pontos eredmények érheték el. Mivel a neuralis hul-
lamfiiggvények nemcsak bizonyos molekulapalydkra,
hanem a teljes Hilbert-térre definialtak, jelentGsen javita-
nak minden korabbi szimuldciés mddszeren, és jelentGs
hatdssal vannak a kvantumkémiara és Gjabban a szilard-
testfizikdra is. Racsokon definidlt modellekre (pl. a ma-
gas hémérsékletl szupravezet6k standard modelljeire)
ugyanez a siker még varat magara; a racs szimmetridinak
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beépitése a neuralis hdlézatokba egy kiilonosen fontos
megoldandé probléma.

...mint molekularis energiafeliiletek

Néhany szaznal tobb elektron teljes hullimfiiggvényé-
nek szimulalasa kifinomult kozelit6 modszerekkel is
szinte lehetetlen, viszont a legtobb kémiai folyamat meg-
értéséhez nem is sziikséges. Mivel az elektronok sokkal
konnyebbek az atommagoknal, sokkal gyorsabban mo-
zognak, igy szinte azonnal kovetik az atommagok moz-
gasat, és mindig a pillanatnyi alapallapotban maradnak
(ez az Gn. Born-Oppenheimer-kozelités). Tovabb4, az
atommagok mozgasa sokkal kevésbé kvantumos, mint az
elektronoké, azaz j6 kozelitéssel klasszikus részecskeként
mozognak egy V(r,, r,, ...) potencidlban:

o

mz’; = Bl
or;

(7
ahol -0V/0r; az egyes atommagokra hat6 effektiv erd.
A Born-Oppenheimer-kozelitésben 77 az elektronok
alapallapoti energidja az adott molekulakonformacié-
ban: a sliriségfunkcional-elmélet (density functional
theory, DFT) segitségével ez az energia és az effektiv er6k
hatékonyan becsiilhet6ek a teljes hullamfiiggvény kisza-
mitasa nélkiil.

Nagy molekulakra (pl. fehérjék) azonban a DFT-ala-
pu szamitas is id6igényes, ezért nem célszerd Gjra és Gjra
elvégezni a (7) mozgisegyenlet megoldisa kdzben. A
szamitasiid6 drasztikusan csokkenthetd, ha a DFT-adat-
pontokhoz egy egyszertibben kiszamithat6 fliggvényt
illesztiink, feltéve hogy a fiiggvény jol kozeliti a valodi
energiafeliiletet két adatpont kozott. Molekuladinamikai
szimulacidkat pl. polinomialis kozelitésekkel a modern
gépi tanulds megjelenése el6tt is sikerrel végeztek kis
molekulakra. Mivel azonban a neuralis halézatok haté-

Z,r,...—X;

e X

4. dbra. Egy uizenetvaltd neurilis halézat (MPNN) elemei. a) Az atomok
(csticsok) és kotések (élek) adataibol bemeneti adatsorokat (x;, x;) kép-
ziink. b) Az €l és két végpontjanak adataibél egy neurilis halozat tizene-
teket (m;_;, m;_,;) general és frissiti az él adatait (x}). c) A beérkez§ iize-
netek alapjdn egy neurdlis hélozat frissiti a csticsok adatait (x}). Az utols6
zenetvaltdsok utdn az egyes atomok hozzdjaruldsat a teljes energidhoz a
csucsok adataibdl szamitjuk ki

SZABO ATTILA: KOLCSONHATO KVANTUMRENDSZEREK SZIMULACIOJA GEPI TANULASSAL

konyabban kozelitenek bonyolult sokvaltozos fliggvé-
nyeket, célszerlibben hasznalhatok a V(r,) energiafeliilet
kozelitésére.

Idealis esetben a héalézatot sok kiilonb6zé moleku-
lat hasznalva egyszer s mindenkorra betanitanank ugy,
hogy utdna Gj Osszetételi molekulakat is szimulalhas-
sunk vele. Ehhez a héaldzatot az egyes atomokat képvi-
sel6 blokkokra kell osztanunk, amelyeket a kivant 6sz-
szetétel szerint adhatunk a hal6zathoz vagy hagyhatunk
el; az extenziv teljes energiat is célszer( az egyes atomok
hozzédjaruldsanak osszegeként kifejezni. A legsikeresebb
ilyen struktara az iizenetvdlto neurdlis hdlézat (messa-
ge-passing neural network, MPNN, 4. 4bra), amelyben
az atomok mint egy graf cstcsai jelennek meg, és ennek
élei egy hatarértéknél (dltaldban 5-10 A) kézelebbi ato-
mokat kotnek Ossze. El6szor a graf csicsaihoz és élei-
hez egy sor szamot (x;, x;) rendeliink (pl. pozicié, atomi
rendszam, oxidaciés szam; kotéstavolsag stb.). Maga a
neuralis hal6zat egy sor tizenetvaltasbdl all. Minden ira-
nyitott élhez egy iizenetet rendeliink:

(8a)

amelyeket minden csicson Osszesitiink (pl. 6sszeadjuk
ezeket). A cstcsok adattartalmat ezen tizenetek alapjin
frissitjiik:

mi_; = M(x;, X, X;),

x] :V(xi)Zj mjﬁi)' (8b)

Az élek adattartalmat szintén frissitjiik a két végpont
adattartalmanak fiiggvényében:

(8¢c)

A gyakorlatban az M, V; E fuggvények kis neuralis hal6-
zatok. Egy sor izenetvaltas utdn a molekula teljes energi-
4jat az egyes atomok hozzajarulasanak 6sszegeként kap-
juk meg, amelyeket a csticsok végs6 adattartalma alapjan
szamitunk ki.

A fenti struktira a neurilis potencialok masodik
generaciojara [7] jellemz6. Ezek szerkezetiiknél fogva
extenzivek és lokalisak, tanitds utdn tetsz6leges mole-
kula-osszetételhez hasznilhatdak, és a kimenetiik nem
fiigg az atomok felsorolasinak sorrendjét6l a bemenet-
ben: mindezek komoly problémakat okoztak az elsé
generacios, egyszer( elérecsatolt neuralis halézatokon
alapul6 potenciilfeliileteknek. Tovabb4, ha a csticsok
és élek adattartalmat skalar, vektor, ... komponensekre
bontjuk, V szimmetrikussa teheté a koordinata-rend-
szer eltolasdra és elforgatdsira, ami kulcsfontossagu
az atomokra haté erék és forgatonyomatékok meg-
bizhat6 becsléséhez. A halézatok pontossaga tovabb
javithat6 hosszu tavu (pl. Coulomb-) erék explicit
hozzaadasaval (4n. harmadik és negyedik generacios
potencialok); a javulds azonban viszonylag kicsi és
praktikus célokra nem 4ll ardnyban a sziikséges szami-
tasi er6forrasokkal.

Ezek a neurilis potencidlfeliiletek széles korben hasz-
ndlatosak a kémiai, anyagtudomanyos és molekularis
biolégiai kutatasban. A gépi tanulds mas széles kdrben

x; = E(xy, %;, %;) .

275



elterjedt alkalmazasaihoz hasonléan szaimos, nagyszamu
példan eldére betanitott potencial is létezik [8], amelyek
tovabb egyszerisitik a szimulacidkat.

...fazisatalakuldsok azonositasara

Egy klasszikus termodinamikai rendszer szimuldlasanak
legegyszeriibb moédja a statisztikus eloszlasbol valé min-
tavétel. Els6 kozelitésben egy ilyen szimulacié tobb ada-
tot (egy sor pillanatfelvételt a rendszer 0sszes szabadsagi
fokarol) produkal, mint amit egy ember kozvetleniil at
tud tekinteni. Ha a rendszer fazisai ismertek vagy meg-
tippelhetdk, az egyes rendezett fazisok rendparaméterei
és ezek fluktuacioi és korreldcioi kiszamithatdak a nyers
adatokbol. Ezek segitségével a paraméterek kiilonb6z6
értékeit hozzarendelhetjik az egyes fazisokhoz, azaz
megrajzolhatjuk a rendszer fazisdiagramjat (erre egy pél-
daa2. dbra).

Ezzel a mddszerrel viszont sosem lehetiink teljesen
biztosak, hogy a rendszer Osszes fazisat megtalaltuk. A
gépi tanulas haszna ebben a feladatban az, hogy a beme-
net szabalyossagait anélkiil tudja felismerni, hogy elére
megadnank, hogy mik ezek a szabalyossagok, igy egy
gépi tanulasos algoritmus akkor is meg tud kiilonboztet-
ni két fazist, ha egyszerl rendparaméterek nem ismertek
vagy nem léteznek.

Ha tudjuk, hogy létezik két kiilonb6z6 fazis, ezeket
standard képfelismerd stb. algoritmusokkal meg tudjuk
kiilonboztetni egymastol [9]. A neuralis halozat tanitasa-
hoz sziikséges adatokat a fazisditmenettdl tavol general-
juk mindkét fazisban; maga a tanitas ugyanugy torténik,
mint az els6 ,kutya vagy macska” példaban. A betanitott
hélézatot ezutan a fazishatarhoz kézelebbi szimulaciokra
futtatjuk le: ahogy atlépjiik a hatart, az egyes fazisok
becsiilt valoszinisége folytonosan valtozik 0-rdl 1-re; az
atmenet annal élesebb, minél nagyobb rendszereket szi-
mulalunk (5. dbra).
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S. dbra. Neuralis halozat altal becsiilt fazisok egy LxL-es négyzetracson
definialt Ising-modellre [9]. Az adatsorok a paramagneses (piros) és a
rendezett ferromagneses (kék) fazisok becsiilt valdszintségét mutatjak.
A fazisatalakulastdl (fiiggéleges szaggatott vonal) tavol mindkét fazis
pontosan beazonosithatd; az dtmenet a masodrendi fazisatalakulastol
elvart médon nagyobb rendszerekre egyre élesebb

Szerencsésebb lenne viszont, ha ilyen el6zetes infor-
maciok nélkiil is azonositani tudnank a rendszer fazisait.
Az el6z6 technikat ehhez az ellendrizetlen tanuldsi (un-
supervised learning) feladathoz is felhasznalhatjuk: ve-
gylink két kozeli pontot a paraméterek terében, tegyiik
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fel, hogy kiilonb6z6 fazisokban vannak, és tanitsunk be
egy neuralis hdlézatot, hogy megkiilonboztesse ezeket.
Ha a két pont valoban kiilonb6z6 fazisokban van, a halo-
zat sokkal sikeresebb lesz, mintha ugyanabban a fazisban
lennének. Ezt a miveletet ismételve a rendszer minden
fazisatmenete feltérképezhet6.

A kiilonb6z6 paraméterekkel végzett szimulacidkat
automatikusan, pusztin az adatok hasonlésagai és kii-
lonbségei alapjan is kiillonboz6 fazisokra oszthatjuk. Az
autoencoder neuralis hilézatokat (6. dbra) ilyen oszta-
lyozasra tervezték: a bemenet és a kimenet szerkezete
megegyezik, de van egy szlik keresztmetszet kdzépen,
sokkal kevesebb neuronnal, mint a bemenet informacio-
tartalma. A tanitdshoz hasznalt hibafiiggvény a bemenet
és a kimenet kozti eltérés, igy a betanitott hal6zat a lehe-
t6 legpontosabban reprodukalja az &sszes adatot, amit a
tanitds soran latott. A betanitott halézat sziik kereszt-
metszete igy az adatok legfontosabb jellemzdit tartal-
mazza, erésen tomoritve. Marpedig a kiilonb6z6 fazisok-
ban gyujtott szimulacids adatok kozti legdrasztikusabb
kiilonbségek éppen az egyes fazisok kozott mutatkoznak,
ezért az ugyanahhoz a fazishoz tartoz6 6sszes paraméter-
valasztas a tomoritett formaban egymashoz kozel képe-
z0dik le, a kiilonb6z6 fazisok reprezentacioi eltavolodnak
egymastol, igy kiemelve a fazisokat és a hataraikat [10].

-

6. dbra. Egy autoencoder neuralis halézat bemenete és kimenete azonos
szerkezetli, és betanitds utdn minden bemenetet a lehet6 legpontosab-
ban 6nmagara képez. A kozépen levé szlik keresztmetszet ezért a tani-
tashoz haszndlt adatok legfontosabb eltéréseit tanulja meg kivonni

Az ily médon talalt fazisok fizikai leirasahoz hasz-
nos lenne rendparamétereket talalni, amelyek megkii-
lonboztetik ezeket mas fazisoktdl. A neuralis hal6zatok
bonyolult szerkezetiik miatt nem idedlisak erre a célra,
mas gépi tanuldsi technikak viszont hasznalhat6éak. Egy
lehetséges megoldas az, hogy a rendszer sszes korre-
lacigjat kiszamitjuk egy adott rendig (pl. legfeljebb 4
szabadsagi fok), és megkeressiik az egyes komponensek
koziil a legnagyobbakat, azaz a legvalészinlibb rend-
paramétereket [11]. Ezt az értelmezhetéséget azonban
a hatékonysdg karara érjiik el: a fenti példaban eldre el
kell donteniink, hogy milyen tipusti rendparamétereket
vesziink figyelembe, igy a bonyolultabb fazisok tovdbbra
is rejtve maradnak. Ezzel szemben egy neuralis halézat
kozvetleniil a szimulalt adatokkal is tud dolgozni, igy elv-
ben barmilyen fazist képes azonositani; ezeket a fazisokat
azonban tovabbra is nehéz lehet leirni.

A fentiek nemcsak szamitégépes szimuliciokhoz
hasznosak, hanem olyan 4j kisérleti platformokon is,
mint a kvantumszamitégépek vagy az optikai raicsokban
mozgé ultrahideg atomok, ahol valédi anyagokban el-
képzelhetetlen mérések is elvégezheték. Mivel ezekben
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a rendszerekben minden szabadsagi fok jol elkiiloniil
a tobbitdl, lehetéség van arra, hogy kiilon-kiilén mind-
egyiket megmérjiik, lényegében olyan pillanatfelvételt
készitve, mint amilyet egy szamitégépes szimulaciéban
kapnank. A fenti gépi tanuldsi médszerek ezért kitlin6ek
arra, hogy ezekbdl az adatokbdl a lehet6 legtobb infor-
maciot kinyerjiikk. Ennél ambiciézusabb feladat, hogy egy
kvantumeszkozon végzett mérések segitségével rekonst-
rudljuk a teljes kvantuméllapotot, hogy igy minden mas
mérési eredményt is megjosolhassunk. A neuralis hullam-
fiiggvények ilyen kvantumallapot-tomografidra (qQquantum
state tomography) is j6l hasznalhatok.

Kitekintés

A fenti példak messze nem fedik le a gépi tanulas min-
den fizikai alkalmazdasat [1]; a részecskefizikai kisérle-
tek altal produkalt 6ridsi mennyiségl adat feldolgozasa
példaul elképzelhetetlen lenne hatékony gépi tanulas
nélkil. Azt viszont jol illusztraljak, hogy a sikeres gépi
tanulashoz elengedhetetlen, hogy a feladat fizikai tulaj-
donsagai altal motivalt neurdlis hal6zatokat és algorit-
musokat hasznaljunk. A nyitott kutatasi kérdések is f6leg
ekoriil forognak: ki lehet-e vonni egy rendszer fazisainak
fizikai leirasat egy neuralis hdlézatbdl? Milyen neuralis
halézat tud jol leirni elektron- (spin-, ...) hullamfiigg-
vényeket? E kérdések megvalaszolasihoz a kozkeletd
elképzeléssel szemben nem csak szamitdgépekre van
sziikség: az emberi kreativitas és intuicié legalabb olyan
fontos, mint barmely mas kutatési teriileten.
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INTEGRALHATO MODELLEK A KVANTUM:-

SZAMITOGEPEN

1. A kvantumos szimulacio otlete

A legtobb fizikai rendszer olyan, hogy bar ismerjiik a
rendszer viselkedését leir6 mozgastdrvényeket, alap-
vetd egyenleteket, ezek megoldasa és a rendszer visel-
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kedésének pontos eldrejelzése analitikus modszerekkel
nem lehetséges. Viszonylag kevés olyan probléma van,
ahol egzakt megoldast tudunk adni. A klasszikus fizika-
ban fontos példa a graviticiés soktestprobéma: mig egy
bolygénak a Nap koriili mozgasat pontosan le tudjuk
irni a Kepler-torvényekkel, hirom gravitald test egy-
masra hatasat és a kialakulé mozgast mar nem lehet kép-
letekkel leirni, el6rejelezni. Ugyanakkor egy klasszikus
fizikai soktestprobléma, még ha nem oldhaté is meg
képletekkel, legalabb szamitégépen viszonylag konnyen
szimulalhaté.

Ezzel ellentétben a kvantummechanikai soktestprob-
lémak nem szimulalhatéak hatékonyan - a Hilbert-tér
exponencialisan névekvé mérete miatt. Ez a probléma
vezette Richard Feynmant arra, hogy megalkossa a kvan-
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tumszamitogép elgondolasat. Egy 1981-es el6adasiaban
fogalmazta meg a hiressé valt szavait [1]: ,Nature isn’t
classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and
by golly it’s a wonderful problem, because it doesn’t look
so easy.”

Feynman tehdat azt javasolta, hogy ha a kvantum-
mechanikai torvényekkel leirhat6 természetet akarjuk
szimulalni, akkor legyen a szamitégépiink is kvantumos.
Evtizedekkel késébb ez az elgondolis végiil megvalosult,
legalabbis bizonyos részleteiben. Ma mar léteznek kvan-
tumszamitogépek, amelyek képesek kvantummechani-
kai ,szamitasok” elvégzésére. Ezaltal - legalabbis elvben
- lehet6vé valt, hogy kivitelezziik Feynman eredeti tervét.

A ma elérhet6 kvantumszamitégépek nagyon zajo-
sak (kb. 0,1%-os hibarata logikai kapunként), és tul ke-
vés kvantumbitet (kb. 100) tartalmaznak ahhoz, hogy a
gyakorlati hasznositasuk lehet6vé valjon. Olyan tipusd
feladatokat, mint példaul 4j gydgyszerek vagy egyéb
molekulak tervezése a kozeli jovoben valdsziniileg nem
fognak tudni megoldani. Mindamellett a mai technol6-
gia ahhoz mar elegendd, hogy bizonyos egyszert fizikai
rendszereket a kvantummechanika szabdlyai szerint szi-
mulaljon. Ez egy jelent6s mérfoldkove a mai fizikanak és
a mérnoki tudasnak.

Ebben a cikkben ezekre a ma mar megvalositott kvan-
tumos szimuldcidkra mutatunk példakat, mégpedig az
integralhat6 modellek teriiletérdl. Az alabb emlitett pél-
dakban kiilondsen érdekes médon fonddnak Gssze az
analitikus szamoldsok, a klasszikus szimulalhat6sag és a
kvantumos szamitasok témakorei.

2. Az integralhaté modellek

Az integralhaté modellek a fizikai rendszerek sziik, spe-
cialis osztalyat irjak le. Ezek olyan rendszerek, amelyek-
ben sok extra megmarad6é mennyiség létezik a hagyo-
méanyos megmarad6é mennyiségeken tul. Ezek az extra
megmaradé mennyiségek a mozgastorvények nagyon
specialis voltabol fakadnak. Ezek a kiilonleges tulajdon-
sagok lehet6vé teszik a modellek egzakt megoldasait,
vagy legalabbis bizonyos fizikai mennyiségek egzakt,
analitikus médon torténd kiszamitasat. Integralhaté mo-
delleket taldlunk a klasszikus fizikaban és a kvantumos
vilagban is. Ezek a rendszerek szinte kizardlag egy tér-
beli dimenziéban léteznek. Ugyanakkor ezek a rendsze-
rek egyaltalan nem trivialisak, és mint latni fogjuk alabb,
ezt a teriiletet jelenleg is aktivan kutatjak mind elméleti,
mind kisérleti oldalrol.

Az integralhaté modellek torténete egészen a kvan-
tummechanika héskordig nyulik vissza. Az els6 ilyen
tipust modell felfedezése és megoldasa kozel egyidds a
kvantummechanikaval: Hans Bethe 1931-ben adta meg
az Un. Heisenberg-spinlanc egzakt megoldasat. Ez a mo-
dell eredetileg a magnesség leirdsara szolgalt, azonban
kés6bb a matematika és fizika szamos aganak fejl6dését
befolyasolta. A modell Hamilton-operatora a kdvetkez6
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tomor alakba irhato:
ﬁZZSj-Sj+1. (1)
j

Itt S egy operatorokbdl alkotott 3 elemd vektor, mely-
nek komponensei $* =¢4/2, ahol a = x, y, z és ¢ a Pauli-
matrixokat jeldli. A j index adja meg a spinek sorszamat,
koordinatéjat.

Ebben a modellben viszonylag egyszertien leirhatéak
a magasabb megmaradé mennyiségek. Az els6 4j meg-
maradé mennyiség példaul a kdvetkez6, haromracspon-
tos operatorsiriséggel leirhaté toltés:

Q= zéj '(§j+1 X §j+2)- )
j

A magasabb toltések bonyolultabb alakuak, de viszonylag
egyszerten lehet rajuk egzakt formulakat talalni, 1asd [2].

A fenti spinldincmodellen kiviil szimos m4s ricsmo-
dell is ismeretes. Hires és kdzponti szerepet tolt be az Gn.
Ising-féle kvantumos spinldnc. 1944-ben Lars Onsager
oldotta meg a kétdimenzids Ising-modellt, ami a sta-
tisztikai fizika egyik kozponti modellje. A kétdimenzids
klasszikus rendszer megoldasahoz szorosan kapcsolédik
az Ising-spinlanc, melynek Hamilton-operatora a kovet-
kez6:

H=Y 88, +hS", 3)
j

ahol & a transzverzalis magneses tér.

A Heisenberg-modellnek, az Ising-lancnak és mas
integralhat6 modelleknek is kiilonleges, szokatlan di-
namikai tulajdonsagaik vannak. A modellekben jelen
levé extra megmaradé mennyiségek ahhoz vezetnek,
hogy az elemi gerjesztések szorasi folyamatai teljesen
elasztikusak. Emiatt tehdt nincsen energia- és impulzu-
satadas az elemi gerjesztések kozott, a kolcsonhatas csak
a gerjesztések terjedési sebességét befolyasolja, a szorasi
folyamatokban keletkez6 kvantummechanikai fazisto-
lasokon keresztiil. Ennek kovetkeztében ezekben a rend-
szerekben léteznek megmarad6 dramok, a megmaradé
mennyiségek transzportja pedig altalaban ballisztikus.
Mindez hasonld a szupravezetés tulajdonsdgaihoz, bar a
mogottes mechanizmus teljesen mas.

Ezek és mas, ehhez k6t6d6 egzotikus tulajdonsiagok
motivaltak a kutatokat arra, hogy az integralhaté model-
leket kisérletekben is megvaldsitsak. Eleinte csapdazott
hideg atomokkal dolgoztak, és kiilonb6z6 csoportok
igazoltak az integralhaté modellek dinamikajat leir6 el-
méleteket - lasd példaul [3-5]. Jelen cikkiinkben a hideg
atomos kisérleteket nem ismertetjiik, helyettiik a kvan-
tumszamitdgépekkel torténd kvantumos szimulaciokkal
foglalkozunk.

Fontos, hogy az integralhaté modellek mindig finom-
hangoltak: altalaban barmilyen kis perturbacié (példaul
a kornyezettel val6 kolcsonhatas) megsérti az extra meg-
maradasi torvényeket. Ugyanakkor az integralhatdsag
sértése lehet olyan kicsi, hogy egy adott kisérlet idGtarta-
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ma alatt nem jelentkezik a hatasa, és ezaltal a gyakorlat-
ban is tanulmanyozni lehet az adott rendszer kiilonleges
dinamikai tulajdonsagait.

3. Spinlancmodellek kvantumos
szimuldcioja

Ahhoz, hogy konkrét kisérletekrél tudjunk beszélni, el6-
szOr par szot kell sz6lni a kvantumos szdmoldsok kvan-
tumaramkords modelljérél, és hogy ezt hogyan lehet va-
16s ideji dinamika szimulalasira haszndlni.

A kvantummechanikdban az id6fejl6dést a Hamil-
ton-operator generalja. Az ugynevezett analég kvan-
tumszamitégépekben van lehetség arra, hogy egy adott
rendszer folytonos id6fejlédését egy valasztott Hamil-
ton-operatorral lehessen irdanyitani. Egy ilyen kisérlet-
ben a Hamilton-operitor paraméterei lehetnek elére
bedllitott értékek vagy akar id6ben valtozdak is. Az id6-
fejlédés maga azonban mindig folytonos.

Ezzel ellentétben a digitalis kvantumszamitégépek
diszkrét idejli dinamikat tudnak szimulalni, és mindez az
ugynevezett kvantumaramkoros szamitasi modell kere-
teiben torténik. Ez a keret a kovetkezoket foglalja maga-
ban.

A kvantumszamitégép a szamitas elején a felhasznalt
qubiteket beallitja egy elére kivalasztott, dsszefonddas
nélkili dllapotba. Ezt kévetSen a szamitdgép egy- vagy
kétbites kvantumos kapukkal hat a rendszeren. A valasz-
tott kvantumos operacidk sorozatat kvantumos algorit-
musnak vagy kvantumaramkornek nevezziik. A szamolas
végén a rendszer allapotarél mérésekkel lehet informa-
ciét kinyerni. A kvantummechanikai mérés valészin(isé-
gi alapd, ezért a pontos informacidk megszerzése érde-
kében az algoritmust tobbszor egymas utan meg is lehet
ismételni. Egy kvantumaramkor lathat6 az 1. dbrdn.

T T+ 1+ 1

o o

1. dbra. Példa a kvantumaramkorok dbrazoldsira négy qubiten. A fiig-
g6leges vonalak felelnek meg a qubiteknek, az dbra aljan szerepel a
bemeneti allapot, a tetején pedig a kimenet. A téglalapok egy-, illetve
kétracspontos kvantumos kapuknak felelnek meg

Annak ellenére, hogy a kvantumos algoritmusok
csak 1épésenként torténd ido6fejlodést tesznek lehetGvé,
van arra mdd, hogy kozeliteni lehessen egy adott Hamil-
ton-operator altal generalt folytonos idejii dinamikat.
Vegyiink példaul egy olyan spinlancmodellt, ahol csak
szomszédos spinek hatnak kolcson! Ilyenkor a Hamil-
ton-operator dltalanossagban igy irhato:

L A
H=3 4

Jj=1
ahol IAzj-, 1ajésj+ 1indext spineken hat6 kélcsonhatasi
tag. A Schrodinger-egyenlet altal generalt id6fejlédést az
e~ uniter operator irja le. Ezt az operatort kdzelithetjiik
az un. Trotter-Suzuki-felbontassal, annak is egy specia-
lis valtozataval. A t véges id6t felbontjuk N darab At =
t/N kis id6lépésre. Ezutan a Hamilton-operator tagjait
szétbontjuk két csoportba Ggy, hogy egy adott csoporton
beliil az egyes tagok kiilonb6z6 kvantumos biteket érint-
senek:

L2,

L,
H:[thj, 2j+lj+(zh2j+l’2j+2J. (5)
J=1 j=1

Ezutan az egyes tagokat kiilon-kiilon exponencializaljuk
a At idejli folytonos id6fejlesztésre, a kovetkezd elrende-
zésben:

L2 L/2
exp(— iHAt)z[HUZj, 2j+1J(HU2j+1,2j+2]> (6)
j=1 j=1
ahol
Uk,kn = exp(— iflk,kHAt ). (7)

A kozelités hibaja (Af)*-tel aranyos. Ennek a kozelit6 el-
jarasnak az az elénye, hogy az Uy, egy kétracspontos
kvantumos kapu, ami kiilonféle digitalis kvantumsza-
mitégépeken valddi futtatdsok sordn megvaldsithato.
Ezaltal a kvantumszamitégép valéban szimulalni fogja
az adott Hamilton-operator altal generalt dinamikat, ha
a (6) altal leirt miveletek Osszességét megismételjik N
alkalommal.

A kvantumos kapuk fenti elrendezését, a kialakuld
kvantumos szamitast ,téglafalas kvantumaramkor”-nek
(brickwork quantum circuit) is szokas hivni, és egy na-
gyon elterjedt algoritmusa a kvantumos szimuldcioknak.
Az elnevezés onnan ered, hogy az dramkor dbrazolasa
egy téglafalra emlékeztet (2. dbra).

(R Y e e e e e Y Y

0 066006d0 0600

2. dbra. A kvantumos szimulaciok téglafal-aramko6ros modellje. Az dbra
aljan szerepel a bemeneti dllapot, a tetején pedig a kimenet. Az egyes
kétracspontos kapuk a (7) egyenlet altal leirt uniter operatort valositjak
meg
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Eztazelrendezést az elmult par évben hasznaltak mar
integralhaté kvantumspinlancok vizsgalatara is. Ezek-
bdl a kvantumszamitégépes kisérletekbdl ismertetiink
lentebb kett6t, melyek az Gn. Heisenberg-spinlancokkal
foglalkoztak. A téglafalas geometridju kvantumos dram-
korok egy masik tipusd alkalmazasat (a véletlen kapus
aramkoroket) Rakovszky Tibor cikke targyalja [6].

Felmeriilhet az olvaséban a kérdés, hogy a (6) egyen-
letben irt kozelités vajon megsérti-e az integralhatosa-
got. Szerencsére ez a probléma nem 4ll fenn: be lehet
bizonyitani, hogy annak ellenére, hogy az egyenlet két
oldala valéban csak kozelit6leg azonos, a jobb oldalon
1év6 szorzat a legtobb esetben onmagaban is egy egzak-
tul integralhaté rendszert ir le. Ennek a specidlis tulaj-
donsagnak kdszonhetd, hogy a téglafalas kvantumaram-
kor valoéban idedlis médszer az integralhaté spinlancok
kvantumszamitégépes tanulmanyozasara.

4. Heisenberg-spinlancok

Az XXZ Heisenberg-spinlanc az egyik legtobbet vizsgalt
integralhaté modell. A Hamilton-operator, mely az (1)
egyenletben szerepl6 operator anizotrop altalanositésa,
a kovetkez6 alakot olti:

H:Z&f&jH +6767,+AG; G}, (8)
j
Itt 67> a j. racsponton hat6 Pauli-operatort jelzi, A pe-
dig az tgynevezett anizotropiaparaméter. A modellben
megmarad a magnesezettség z komponense, vagyis a
Hamilton-operatorral kommutal az

&z 1 ~z
§=2-6 Q)
J

operator. Az SU(2) forgatasi szimmetriaval rendelkez6
eredeti Heisenberg-modellt (vagy masképp: az XXX-
modellt) a A = 1 specidlis esetben kapjuk vissza.

A kovetkez6kben két kisérletet ismertetiink, ame-
lyekben a fenti modellek viselkedését tanulmdanyoztak
digitalis kvantumszamitégépen. Az id6fejlesztést mind-
két esetben a téglafalas kvantumaramkor segitségével
valositottak meg.

Mindkét kisérletet a Google Quantum AI részlegén
valositottak meg. A Google kvantumszamitdgépei a
szupravezet6 qubites technolégiat hasznaljak. A qubi-
tek két lehetséges allapotat transzmonok kddoljak, lasd
Gyenis Andréis cikkét [7]. A |0) dllapot az alapéllapot,
mig az |1) a gerjesztett dllapot. A gerjesztésben részt vesz
az elektromagneses tér is, emiatt az irodalomban gyak-
ran hasznaljak a gerjesztésre a foton kifejezést. Ez azon-
ban nem 6sszekeverendd a vakuumban terjed6 fotonnal,
ugyanis itt egy soktestrendszer kollektiv gerjesztésérél
van szo.

A kisérletben a qubitek egy kétdimenzids racsban
helyezkednek el, ahol a szomszédok tudnak egymassal
kolcsonhatni, illetve szomszédos qubitparokon lehet két-
racspontos uniter kapukkal hatni. Azonban a kapukat jol
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megvalasztva elérhet6 az is, hogy a rendszer igazabdl egy
egydimenzios spinlancot szimulaljon.

4.1. Kotott allapotok elbomlasa

Az els6 kisérletben [8] a Google Quantum Al egyik kvan-
tumszamitdgépén, 24 szupravezetd qubiten megvald-
sitottak egy integralhaté modellt, az XXZ Heisenberg-
spinlanchoz tartoz6 téglafalas kvantumaramkort.

A kisérlet célja kettds volt. Egyrészt demonstralni
akartak azt, hogy az akkori legjobb technolégiaval mar
ki lehet mutatni az integralhaté modellek specialis dina-
mikai tulajdonsagait. Masrészt pedig meg akartak vizs-
galni az integralhatdsag megsértésének kovetkezményeit
egy konkrét fizikai szituacidoban. Az alabbiakban ismer-
tetjiik a kisérlet elvi hatterét és értelmezését, az olvaso-
nak pedig ajanljuk a [9] 6sszefoglalot is.

Ebben a kisérletben a megmaradasi térvényeknek
egy specidlis kovetkezményét, a kotott allapotok meg-
maradasat vizsgaltak. Ismeretes, hogy az XXZ Hei-
senberg-spinlancokban az elemi spingerjesztések ko-
tott allapotokat tudnak alkotni. A kotott allapotoknak
ismeretes az egzakt hullamfiiggvénye, és mind az
energidjuk, mind a térbeli kiterjedésiik kiszamolhato.
Kiilonleges tulajdonsdga a modellnek, hogy a kotott alla-
potok energiai bele tudnak nyulni a spektrumnak azon
folytonos részébe, amit az azonos szamu szeparalt ré-
szecskék alkotnak. Ezért egy tipikus nem integralhaté
modellben a kotott allapotok - legalabbis egy résziik
— nem lehetnének stabilak, mert mindenféle dinami-
kai folyamat soran elbomlananak a kontinuumba. Ezzel
ellentétben a Heisenberg-spinlanc extra megmaradé
mennyiségei meggatoljak a kotott allapotok elbomlasit,
és ezek teljesen stabilak maradnak minden nemegyen-
sulyi folyamatban.

A kisérletben ezt a stabilitast tesztelték. Az otlet az
volt, hogy vették a spinlanc ferromagneses allapotat,
amit a részecskék nyelvén a vakuumként lehet értel-
mezni. A kvantumbitek nyelvén ezt példdul L darab |0)
allapott qubittel lehet leirni. Ezutdn preparaltak n darab
részecskét egymas melletti poziciokban, a részecskéket
a qubitek |1)-es 4llapota kédolta. Ezutdn futtattik a tég-
lafalas kvantumaramkort, majd megmérték a rendszer
qubitjeinek az allapotat késébbi id6pontokban.

Az eredetileg preparalt szorzatallapot nem sajatalla-
pota a rendszernek, emiatt kialakult egy nemegyensulyi
dinamika. A kezdeti allapotnak nagy atfedése van az n
részecskés, kiilonb6z6 impulzusu egzakt kotott allapo-
tokkal. Ezek a kotott dllapotok nem tudnak elbomlani.
Ezért ha egy kés6bbi id6pontban megmérték az egyes
qubitek allapotat, akkor viszonylag nagy valdsziniiség-
gel kaptak olyan bitsorozatokat, amelyekben a részecs-
kék (az 1-es bitek) egymashoz kozeli helyeken voltak.
Mas szavakkal: a kutatok azt tapasztaltak, hogy az ele-
mi részecskék tényleg nem tudtak kiszabadulni a kotott
allapotbdl. Ez pedig a rendszer integralhatosagat de-
monstralja.
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A mérést ezutan lefuttattdk olyan kezdeti allapotok-
bol is, ahol az eredeti részecskék egymastodl tavolabb
vannak, majd a kvantumaramkor futtatdsa utan szintén
megmérték a rendszert. Ilyenkor azt tapasztaltdk, hogy
a részecskék kiilon-kiilon bejartak a rendelkezésre allo
teret. Vagyis onalléan mozgd (bar egymassal kdlcson-
hatd) részecskék dominaltak a dinamikat.

_r,_OO_“‘E photons Jo80g -.«\"O"—--Q‘S photons e
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3. dbra. Kiemelt részlet a [8] cikk eredményeibdl. A kisérletek soran a
spinldncon a fent lathaté kezdeti elrendezéseket vélasztottik, kettd, il-
letve hdrom |1) dllapott qubittel. Ezutdn futtattik a kvantumos dramkort
tobbszor, N szdmu cikluson at. A részecskék helyzetét minden egyes
futtatds utdn megmeérték, ezt sokszor megismételték, és abrazoltik a ré-
szecskék tavolsaganak (a koztiik levd ricspontok szdmanak) valdszint-
ségi eloszlasat. Azt tapasztaltdk, hogy a bal oldali esetekben (kék szin)
kicsi maradt a valoszin(isége annak, hogy a részecskék eltavolodjanak
egymastol, vagyis a kotott dllapot egyben maradt. Ezzel ellentétben a
jobb oldali esetekben (sdrga szin) kell§ szamu futtatds soran egyenletes
eloszlas alakult ki, ami annak felel meg, hogy kiil6nallé részecskék mo-
zogtak a ldncon

Ezutan pedig az integralhatdsag sértését egy kiilon-
leges otlettel vizsgaltak. A spinlanchoz hozzacsatoltak
még extra qubiteket is, amelyekre kiilon kétracspontos
kapukkal hatottak. Az igy nyert idéfejleszté operator
nem volt mar integralhat6. Ennek ellenére azt tapasz-
taltak a kisérletben, hogy a kotott allapotok sokdig épek
maradtak annak ellenére, hogy mar nem voltak érvé-
nyesek a megmaradasi torvények. Ez meglepd kisérleti
eredmény volt, ugyanis a geometria megvaltozasa miatt
az integralhatdsag sértése ,nagynak” tlinik, és ezért az
volt a varakozas, hogy a kotott allapotok rovid id6 alatt
elbomlanak.

Késébb egy masik kutatdcsoport egy hagyomanyos
szamitégépen elvégzett numerikus munkaval igazol-
ta, hogy a kotott dllapotok latszélagos stabilitasa végiil
is csak egy véges méreti effektus volt, ami nagy mére-

t spinlancok esetében fokozatosan eltlinik [10]. Ezen
utobbi munka miatt mondhatjuk, hogy végeredményben
ebben a problémaban a klasszikus szamitégép egyeldre
hatékonyabb, mint a kvantumos. Mindamellett a kisérlet
fontos mérfoldké volt, ugyanis ez volt az elsé eset, hogy
az integralhatosag kovetkezményeit digitalis kvantum-
szamitégépen is meg lehetett mar figyelni.

4.2. Tovabbi kisérletek

Egy késobbi kisérletben a Google Quantum Al az integ-
ralhaté modellek nemegyensulyi dinamikajat vizsgalva
olyan eredményekhez is eljutott, amiket korabban ha-
gyomanyos szamitégéppel nem sikeriilt elérni [11]. En-
nek a kisérletnek és a vizsgalt dinamikai effektusnak a
részletesebb ismertetése mar tilnyulik ezen cikk kere-
tein, ezért itt csak nagyon tomoren 6sszegezziik az ered-
ményeket.

A [11] cikkben a kutaték téglafalas kvantumdaram-
kor segitségével tanulmanyoztak az XXX spinlanc nem-
egyensulyi spintranszportjat 46 szupravezet6 qubiten.
Ez azért nagyon érdekes probléma, mert van egy jelen-
leg is foly6 vita a kutatok kozott, hogy a spintranszport
milyen univerzalitasi osztalyba tartozik. A problémanak
egzakt megoldasa egyelére még nincsen, a klasszikus
szamitdgépen elvégzett numerikus szamoldsok pedig
nem kielégité mindségiliek a szamitas bonyolultsiga mi-
att. Végiil a [11] kisérlet egy dont6 informaciot tett hozza
a kérdéshez: megmutattak, hogy bar a spintranszportot
latszolag a 3/2-es dinamikai exponenssel leirhaté tun.
Khardar-Parisi-Zhang- (KPZ-) skédlazas irja le, a ma-
gasabb rendd kumuldnsok mar eltérést mutatnak a
KPZ-alaktol. A kisérlet ezzel egy olyan valaszt tudott
megadni, amely a klasszikus szamitdgép szamadra tul
nehéz volt.

5. Tovabbi kutatasi irinyok

Az integralhaté modellek kvantumszamitégépen tor-
ténd vizsgalata tovabbra is aktiv kutatasi teriilet, amely
szamos kihivast tartogat. Ezek koziil most megemlitiink
néhany kutatasi iranyt.

Nyitott kérdés az integralhaté modellek egzakt sajat-
allapotainak belsé komplexitiasa. A konkrét kérdés az,
hogy milyen komplex kvantumos algoritmusokkal lehet
preparalni egy egzakt sajatallapotot. Egy nem integral-
haté6 modellben az 4allapotokat preparilé kvantumos
algoritmus szamitasi igénye a részecskék szamaval ex-
ponencialisan ndvekszik, azonban az integralhaté model-
lekben taldn csak polinomialis a komplexitas novekedése.
Ez egy elméleti kérdés, aminek viszont lehet alkalmazasa
a kvantumos folény demonstralasinak szempontjabol.
A szerz6 aktivan foglalkozik ezzel a kérdéssel [12, 13].

Nyitott kérdés, hogy az integralhaté modelleket fel
lehet-e hasznalni a kvantumszamitégépek hatékony tesz-
telésére (benchmarking). Ha az integralhaté modellek-
ben analitikusan (papiron vagy klasszikus szamitégépen
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hatékonyan) is ki tudunk szamolni fizikai mennyisége-
ket, akkor ezek segitségével tesztelhet6vé valnak a kvan-
tumszamitogépek.

Tovabbi érdekes téma a kvantumos korrelaciok ki-
sérleti vizsgalata akar egyensilyban, akdr nemegyensu-
lyi dinamika sordn. Erre példa a fenti masodik kisérlet,
azonban még sok olyan szituacié van, ahol az integral-
haté modellek egzotikus hatvanykitevével leirhato, al-
gebrailag csokkend korreldciokkal birnak.

Osszefoglalasként kijelenthetd, hogy a digitalis kvan-
tumszamitégépek technolégidja mara mar elérte azt a
szintet, hogy érdekes fizikai jelenségeket lehessen veliik
vizsgalni, az integralhaté modellek vilaga pedig alkalmas
terepnek bizonyul mindehhez. gy taldlkozik egymas-
sal az egzakt elméleti szamolasok vilaga és a kvantumos
szimulaciok Feynmanig visszanyuld elgondolasa. Az in-
tegralhaté modellek gyakorlatilag egyid6sek a kvantum-

mechanikaval, és Ggy tlinik, hogy a legtjabb technold-
giai fejl6dés soran is hasznosnak bizonyulnak.
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VELETLEN KVANTUMOS ARAMKOROK

Bevezet6: a kvantuminformacio6
dinamikdja zart rendszerekben

A nagyszamu egymassal kolcsonhat6 részecskébdl allo
makroszkopikus rendszerekkel foglalkoz6 kvantu-
mos soktestfizika hagyomanyosan f6leg a h6mérsékleti
egyensulyban vagy ahhoz kozel 1év6 rendszerek leirasa-
ra koncentralt, amelyekben a statisztikus fizika alapelvei
érvényesiilnek. Ezen tulmutat az egyensulytdl tavoli
rendszerek leirasanak problémaja. Hagyomanyosan ezek
mint nyilt rendszerek jelennek meg, amelyek energiat és
informaciét cserélnek a kornyezetiikkel. Ehhez képest a
kvantumos soktestfizikanak egy egészen (j terepét jelen-
ti a nemegyensulyi zdrt kvantumrendszerek problémaja,
amely az elmult évtizedek kisérleti attoréseinek eredmé-
nyeképpen keriilt a kutatasok el6terébe.

Ezen attoéréseknek hala ma maér szamos kiilénbo-
20 kisérleti platform (hideg atomok, csapdazott ionok,
szupravezet$ aramkorok stb.) ll rendelkezésre, amelyek
olyan mértékben elszigeteltek a kornyezetiikt6l, hogy

Rakovszky Tibor 2024 6ta a BME Elméleti Fizi-
ka Tanszék docense, Marie Curie-osztondijas
kutatd, a HUN-REN , Kvantumos hibajavit ko-
dok és nemegyenstlyi fazisok” Kutatdcsoport
vezetGje. Ezenfelill tagja a 2025-ben megalakult
HUN-REN-BME-BCE Kvantumtechnoldgia
Kutatdcsoportnak. 2020 és 2024 kozott a Stan-
ford Egyetemen volt posztdoktori kutatd, dok-
tori tanulmdnyait pedig a Miincheni Miszaki
Egyetemen (TU Miinchen) végezte. Kutatasi
teriilete a kvantumos soktestrendszerek vizs-
galata, kiilonos tekintettel azok nemegyensulyi
viselkedésére, illetve a kvantumos hibajavitas.
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viselkedésiik egy aranylag hosszu idéskalan jol leirhatd
a kvantummechanikai Schrodinger-egyenlettel, anélkiil
hogy a kornyezeti dekoherencia elrontana a rendszer
koherens kvantumos viselkedését. Ugyanezeken a plat-
formokon egyszesrmind a kisérletez6k sokkal erésebb
kontrollt gyakorolhatnak a rendszer viselkedése folott
a megszokott szildrdtestfizikai kisérletekhez képest. En-
nek segitségével kiillonb6z8, egyensulytdl tavoli kezd6-
allapotokat tudnak létrehozni, illetve kontrolldlt médon
tudnak kélcsonhatasokat indukalni a kiilonb6z6 részecs-
kék kozott. Mindez egy sor izgalmas 4j fizikai kérdést vet
fel azzal kapcsolatban, hogy hogyan fejlédik idében egy
ilyen zart, er6sen kolcsonhaté kvantumos rendszer.

Kiilonosen érdekes annak a vizsgalata, hogy a rend-
szer id6fejlédése soran hogyan alakulnak ki kiilonféle
kvantumos korreldcidk a rendszer alkotdelemei kozott,
kiilonos tekintettel a kvantum-informaciéelméletben
kulcsszerepet jatsz6 kvantumos Osszefondddsra. Az id6
elérehaladtaval a kolcsonhatasok kovetkeztében 6ssze-
fonddas alakul ki kezdetben csak a térben egymashoz
kozeli, kés6bb pedig egyre tavolabbi részecskék kozott.
Hogyan tudjuk leirni az 0sszefonddas dinamikajat zart
kvantumrendszerekben? Koévet-e a viselkedése olyan
univerzalis szabalyszer(iségeket, amelyek a fizikai rend-
szerek valamilyen nagyobb osztalyara egyarant jellem-
z6ek?

Az ilyen kérdések megvalaszolasat neheziti a rendel-
kezésre allo elméleti eszkoztar szlikossége. Mig példa-
ul egyensilyi kvantumos soktestrendszerek leirasira a
numerikus mddszerek széles arzenalja 4ll rendelkezésre
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(pl. Monte Carlo-mddszerek, illetve tenzorhaldzatok),
ugyanezen moddszerek az egyensulytdl tavol altalaban
csak igen rovid idoskaldkon adnak megbizhat6 ered-
ményt - tobbek kozott éppen a részecskék kozotti erds
Osszefonddas miatt! Bar ezek a rovid idejli szimulaciok
is sok hasznos informaciét szolgaltatnak, mégis sziikség
van olyan egyszerd modellekre, amelyekben a rendszer
dinamikajat hosszabb skdlakon tudjuk kovetni, de ame-
lyek mégis betekintést tudnak nyujtani a fent emlitett
univerzalis torvényszertiségekbe. Ilyen egyszeri modellt
nyujtanak kiilonféle kvantumos aramkorok, amelyek
egyszersmind a kvantum-szamitdstudomany problémai
felé is 0sszekotd kapocsként szolgalnak. A tovabbiakban
ezekrdl lesz sz6.

Kvantumos dramkorok

Egy zart kvantumos rendszert vizsgalunk, amelynek
kvantumallapota, |y) a jol ismert id6fiiggé Schrodin-
ger-egyenletet koveti:

ol @)=~ |y). (1)

Itt, ahogy ezentul végig, # = 1 egységrendszerben dol-
gozunk, és Ha Hamilton-operator, amely fizikailag a
rendszer Osszenergidjanak felel meg, és tartalmazza a
részecskék kozotti killonféle kolcsonhatdsokat, illetve a
kiilonféle kiils6 (pl. elektromagneses) terek rajuk gyako-
rolt hatdsat.!

A jelen cikkben olyan rendszerekkel foglalkozunk,
ahol a részecskék térbeli helyzete egy szabalyos racsot
alkot, amelyet id6ben rogzitettnek tekinthetiink (pl. hi-
deg atomos kisérletekben az atomok egy lézerekkel 1ét-
rehozott un. ,optikai racsban” helyezkednek el). A ré-
szecskék mozgasallapotat tehat elhanyagoljuk, és csupan
bels6 szabadsagi fokaikra (pl. egy atom legkiils6 elekt-
ronjanak allapotara) fékuszalunk: ezek allapotat irja le
a |y) hullimfiiggvény. Legyen egy adott rdcspontban
a lehetséges bels6 allapotok szama ¢; a legegyszeriibb
nem trivialis esetben g = 2, tehat minden részecskét két
bels6 szabadsagi fokkal irhatunk le. Ezeket tekinthetjiik
pl. egy effektiv spin ,fel” és ,le” allapotainak (ebben az
értelmezésben g > 2 egy magasabb spinii részecskének
felel meg). Ez a g = 2 eset tipikus a kvantuminforma-
tika kontextusaban, ahol egy ilyen kétallapot rendszer
egy kvantumos bitnek, avagy qubitnek felel meg. Ebben
a kontextusban a g > 2 esetre mint ,qudit”-re szokas hi-
vatkozni. Az aldbbiakban mi is ezt az elnevezést fogjuk
hasznalni.

Az (1) Schrodinger-egyenlet megoldasa |y (f)) =
e”'H’|l//(0)) alaku, ahol az id6fejlesztést az U@) = et
uniter operator hajtja végre. Mit mondhatunk ennek az
id6fejlédésnek a strukturajarol?

A térbeli lokalitds elve alapjan a H Hamilton-ope-
rator csak az egymashoz kozeli racspontokban 1évé ré-

! Mivel a rendszert zartnak tekintjiik, a rendszer részecskéinek ezen
kiilsé terekre gyakorolt visszahatdsat elhanyagoljuk.
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1. dbra. Két quditen hat uniter kapukbdl 4ll6 ,téglafal geometridju”
kvantumos dramkor egy dimenzidban. Egy véletlen dramkor esetén a
kapukat valamilyen véletlen eloszlasbol vilasztjuk

szecskék kozotti kolcsonhatasokat tartalmaz.? Ilyen
lokalis Hamilton-operatorokra érvényes az Gn. Lieb-
Robinson-tétel [1]. Ennek értelmében az id6fejlédés
soran a korreldciok a rendszerben valamilyen véges v,z
sebességgel terjednek, vagyis ¢ id6 utan az adott helyen
1év6 részcske csak a tble legfeljebb vy rt tavolsagban 1évé
részecskékkel tud nem elhanyagolhat6é mértékid korrela-
ciot kialakitani, ettdl tdvolodva a korrelacidk exponen-
cialisan lecsengenek.? Ez hasonlit a specialis relativitas-
elméletben megszokott helyzetre, ahol a fizikai hatdsok
legfeljebb a fénysebességgel terjednek; az altalunk vizs-
galt lokalis operatorok esetén vy jatssza egy emergens
~fénysebesség” szerepét.

Tovabb egyszerisithet6 a probléma az idéfejlesztd
operator ,diszkretizaldsaval”. Erre kinal lehet6séget a
Solovay-Kitaev-tétel [2], amelyre épitve barmely uni-
ter operator tetsz6leges pontossaggal kozelithetd olyan
uniter operatorok szorzataként, amelyek egyszerre csak
egy vagy két részecskén hatnak. Ez alapozza meg az
univerzdlis kvantumszdmitogép gondolatat, amelyben a
Hilbert-téren hatd tetszéleges uniter operator el6all egy
elemi operaciokbdl felépitett kvantumdramkor forma-
jaban; az aramkort alkotd egy- és kétqudites uniter ope-
ratorokat a ,kvantumkapu” elnevezéssel illetik.

Az idéfejleszts U(t) = e~ operatort ilyen daramkori
alakban felirva konnyen elérhetjiik a Lieb-Robinson-
tétel altal megkovetelt lokalitast, ha csak olyan kapukat
engediink meg, amelyek egymashoz kozeli (pl. szom-
szédos) racspontokon hatnak. A legegyszeriibb ilyen
aramkort, amelyben a kapuk egy egydimenzids racson
stéglafal” elrendezésben helyezkednek el, az 1. dbra
szemlélteti. Jol lathatd, hogy egy ilyen aramkorben a fi-

2 Pontosabban eléfordulhatnak kolcsonhatasok tavoli részecskék
kozott, de ezek erGssége gyorsan — éltalaban exponencialisan - le-
cseng a tavolsaggal.

3 A pontos allitast 4ltaliban a Heisenberg-képben szoktik megfogal-
mazni. Eszerint, ha A egy lokélis operétor, amely A(f) = ¢/"A e "
modon idéfejlédik, B pedig egy masik lokalis operator téle d ta-
volsagra, akkor az [A(f), B] kommutator jo kozelitéssel eltiinik, ha
d > vipt.
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zikai hatdsok véges sebességgel kell, hogy terjedjenek.
A t1d6 az daramkor ,mélységének”, avagy az azt alkotd
rétegek szamanak felel meg. A Lieb-Robinson- és a Solo-
vay-Kitaev-tételeket kombinalva tehat elmondhatjuk,
hogy a lokalis hamiltoni id6fejlédés strukturajat jol meg-
ragadjak az ilyen aramkorok.*

A kvantumdinamika megértésében jelentGs elGre-
lépést hozott az ilyen lokalis kvantumaramkozok vizs-
galata. Ehhez arra volt szitkség, hogy az aramkdrmodellt
elvonatkoztassuk a fenti motivaciotol, és egy olyan al-
talanosabb esetet vizsgaljunk, ahol az aramkort alkotd
kapuknak valamilyen altalanosabb, nem pedig infinite-
zimalis idejd hamiltoni id6fejlédésbdl szarmazd uniter
operatorokat vélasztunk. Ezzel feldldozzuk az eredeti
probléma egyes elemeit (elsGsorban az energiameg-
maradast; liasd lentebb), cserébe azonban a kapuk
megfelel6 megvalasztisa esetén olyan leegyszer(sitett
modelleket kapunk, amelyekben sok minden egzaktul
kiszamithat6. Az ilyen aramkoérmodellek fontos fogo-
dzét kinalnak a kvantumos dinamika megértéséhez,
és sok esetben a bel6liik levont kovetkeztetések az ere-
detileg vizsgalt hamiltoni dinamikdra is érvényesek. A
tovabbiakban ezen aramkormodelleknek egy fontos
osztalyaval, az an. véletlen kvantumdramkorikkel fog-
lalkozunk.?

Ahogy a név is mutatja, a véletlen aramkoros mo-
dellben az aramkort alkoté kapuk nem valamilyen fix
(»determinisztikus”) uniter operatornak felelnek meg,
hanem azokat véletlenszerlien vélasztjuk a kétqudites
uniter operatorok halmazabél. Egy ilyen modell tehat
nem egy konkrét aramkor, hanem hasonlé geometriai
struktdiraju aramkorok statisztikus sokasaga. Azt vizs-
galva, hogy ennek a sokasagnak egy ,tipikus” tagja ho-
gyan viselkedik, betekintést nyeriink a lokalis dinamika
univerzalis tulajdonsagaiba.

A fenti leirds a lehetséges modelleknek még mindig
egy tag osztalyat engedi meg, hiszen megadhatjuk, hogy
az aramkoroknek milyen halmazat vizsgédljuk, és hogy a
lehetséges aramkorokhoz milyen valészinliségeket ren-
deljink. Az alabbiakban attekintjiik a legegyszeriibb
esetet, majd megemlitjiik néhany fontos altalanositasat.

Maradjunk tehdt az I. dbrdn lathat6é egydimenzios
stéglafalas” geometridji aramkoroknél. A problémat
tovabb egyszerisithetjiik, ha az dramkorben szerepld
kapuk mindegyikét egymastol fliggetleniil valasztjuk a
kétqudites uniter operatorok koziil. Tovabba mindegyik
kaput ugyanabbdl az eloszldsbdl valasztjuk: igy tehat -
bar egy konkrét aramkor térben és idében inhomogén
(kiilonb6z6 helyeken kiilonb6z6 kapuk) - az aramkorok
sokasdga mégis statisztikusan homogén és invarians a
tér- és id6beli eltolasra.

Mar csak egy dolgot kell rogziteniink: azt a valdszi-
niliségi eloszlast, amelybdl a kapukat valasztjuk. A kapuk

IS

Ugyanezen aramkormodellnek a Schrodinger-egyenletbdl val leve-
zetésével kapcsolatban ajanljuk Pozsgay Balazs cikkét a Fizikai Szemle
ugyanezen szamaban.

Az aramkormodelleknek egy masik fontos osztalyara példa [3].

@
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két quditen hatnak, igy a g> x g*> méret{i uniter matrixok
halmazan kell egy eloszlast definidlnunk. Szerencsére
erre kinalkozik egy természetes valasztas, a Haar Alfréd
magyar matematikusrol elnevezett Haar-eloszlds. Ennek
definialé tulajdonsiaga, hogy invaridns egy tetsz6leges
uniter matrixszal valé szorzisra: ha ,uH(U) a Haar-el-
oszldsban a valészin(iségi mértéke egy U uniternek, és
Vegy tetszbleges, rogzitett uniter matrix, akkor pu,(0) =
,uH(UI}) = ,uH(I}U). A Haar-eloszlas tehat egyenletes
az uniter matrixok halmazan. Ha az dramkér min-
den elemét (egymastdl fiiggetleniil) a Haar-eloszlas-
bol valasztjuk, akkor kapjuk az Gn. Haar-féle véletlen
kvantumdramkoért. A kovetkezo fejezetben ezt vessziik
kozelebbrol szemiigyre.

A kvantumdinamikatdl a statisztikus
fizikdig és vissza

Fentebb azt allitottuk, hogy a véletlen dramkorok sok-
szor egzakt megoldasokhoz vezetnek. Most réviden va-
zolunk erre egy példat, amely megmutatja, hogy a vélet-
len aramkorok érdekes kapcsolatot létesitenek a fizika
két tavolinak tliné aga, a kvantumos dinamika és a klasz-
szikus egyensulyi statisztikus fizika kozott: az utobbi jol
ismert eredményei atiiltethet6k az el6bbi kontextusaba.
Alabb egy konkrét szamitason keresztiil mutatjuk be ezt
a konstrukciét — emiatt a cikk ezen része a tobbihez ké-
pest tobb technikai részletet tartalmaz. Tovabbi részle-
tek talalhatdak a [4] hivatkozasban.

Mint a bevezetében jeleztiik, céliink annak megér-
tése, hogy hogyan alakul ki kvantumos 0sszefonddas a
rendszert alkotd részecskék kozott. Az dsszefonddas jel-
legzetessége, hogy bar az egész rendszer (amelyet zartnak
tekintiink) egy tiszta kvantumallapottal (a Hilbert-tér egy
egységvektoraval) irhatd le, a részrendszereit mar kevert
dllapotokkal (matematikailag: siriségmatrixokkal, azaz a
Hilbert-téren haté pozitiv definit, egységnyi nyomu ope-
ratorokkal) tudjuk csak leirni.® Az A-val jelolt részrend-
szerhez (azaz a quditek valamilyen részhalmazdhoz) tarto-
26 p, stiriségmatrixot megkapjuk mint az egész rendszer
allapotanak ,részleges nyomat™ g, = Tri(|y)(y]), ahol
A az a A részrendszer komplementumat jeldli.

Az Osszefonddas egyik lehetséges mérészama a g,
striségmatrix un. ,tisztasaga” (purity), Py = Tr,(pi).
Minél kisebb P, értéke, annil erésebb az 6sszefonddas
az A és az A-beli részecskék kozott. Azt varjuk tehit,
hogy a kolcsonhaté kvantumos rendszer dinamikdja
soran ¥, id6ben egyre csokkenni fog, mig végiil vala-
milyen kis értéken szaturaloédik, ami az Osszefonddas
maximalis mértékének felel meg. A Haar-féle véletlen
aramkoros modell segitségével képesek vagyunk ezt az
intuiciot egzakt szdmolassa konvertalni.

Legyen U egy t mélység( uniter dramkér, |y,) pedig
a rendszer kezdGallapota; az id6fejlesztett allapot tehat

¢ A tiszta és kevert kvantumallapotok kozotti kiilonbségre lasd Kormos
Marton cikkét a Fizikai Szemle 2025. aprilisi szimaban.
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[y () = U|yp). Célunk a kévetkezd mennyiség megha-
tdrozdsa:

() =Tr,| Trz(U]y )(ya | U Tes (U)o [0) |- )

A fenti kifejezés fiigg az U dramkort6l, amely lithatéan
négyszer jelenik meg, ebbdl kétszer komplex konjugalva.
Ha a tisztasag dtlagos viselkedését akarjuk megérteni,
atlagolva a véletlen aramkor kiilonbo6z6 realizacidira,
akkor tehat sziikségiink lesz ennek a ,megnégyszere-
zett” uniter operatornak az atlagara. Itt azonban segit-
ségiinkre van az a feltevésiink, hogy az aramkor kapui
egymastol fiiggetlenek, igy az atlagolast elvégezhetjiik
az egyes kapukra kiilon-kiilon. Legyen u egy ilyen uniter
kapu! Amire ezek utan sziikségiink van, az az alabbi ki-
fejezés (a véletlen eloszlasra val6 atlagolast feliilvonassal
jeloljiik):

3

ahol az als6 indexek mind 1-t6] g-ig terjed6 értékeket
vehetnek fel. Mint azt a (3) jobb oldalan jeleztiik, ez az
operator egy megnégyszerezett, (¢*)* dimenziés Hil-
bert-téren hat.

Szerencsére a Haar-eloszlas (3) tipustt momentumai-
ra jol ismert formuldk dllnak rendelkezésre. Ezekbdl azt
kapjuk, hogy a keresett atlag két tag 6sszege, ahol mind-
két tag egy-egy projektornak felel meg a négyszeres Hil-
bert-téren. Azaz pontosan két allapot van (a négyszeres
Hilbert-térben, amit duplazott kacsacsérrel jeldliink),
amely minden u operator esetén invarians az [u ® 4" ® u
® u’] kifejezéssel vald szorzasra:

||+>> = Z |a1a2a3a4>é‘ﬂlﬂz 5a3a4 >

A a304

|| _>> = Z |a1a2a3a4>5a,44 5012{13 .

a0 a304

umln uazbz uﬂ3b~, uu4b4 = [u ® u ® u ® u ]ﬂlﬂzﬂ3ﬂ4 Shibybsby >

)

Az ennnek a két dllapotnak megfeleld projektort P,-szal
és P_-szal jelolve azt kapjuk, hogy

u®u*®u®u*:P++P_:ZPJ. (5)

xelhetjiik, ahol i = 1, ..., N jeloli, hogy melyik kapurdl
van sz6. Ezekre a g;-kre egy-egy klasszikus spin két le-
hetséges dllapotaként gondolhatunk. Az Osszeg tagjai
levezethetGek a (4) definiciokbdl, és azt kapjuk, hogy
mindegyik tag pozitiv valés szdmnak adodik. Igy tehat
arra a meglepd kovetkeztesétre jutunk, hogy a tisztasag
a Haar-dramkorben megegyezik egy klasszikus statisz-
tikus fizikai spinmodell dllapotiosszegével:

)= z g Htaih

{oi=£}

(lasd a 2. dbrat). Az aramkor struktarajabol adédik,
hogy a H klasszikus energia lokilis lesz, és belithatd,
hogy egy ferromagneses Ising-modellhez fog hasonli-
tani.

A klasszikus statisztikus modell a fizikai kvan-
tumrendszerhez képest eggyel magasabb dimenziéju,
ahol az extra dimenzi6 az id6nek (az dramkor mélysé-
gének) felel meg. Ebben az irdnyban a hatarfeltételek
nem periodikusak, hanem a (2) egyenletbdl adédnak.
Az egyenletet megvizsgalva azt kapjuk, hogy a tiszta-
sag definiciéjaban megjelené nyomok (trace-ek) éppen
megfelelnek a négyszeres Hilbert-tér (4) egyenletben
definialt kétféle allapottal val6 belsé szorzatnak: az A
részrendszerben a ||-)) allapot jelenik meg, mig az A-
ban a ||+)) allapot (2. dbra). Ha A egy térben Osszefiig-
g6 régid, ez éppen egy doménnak felel meg a klasszikus
spinmodell fels6 hatarfeliiletén. A masik hatarfeliilet ha-
tarfeltételét a kezdeti |y, ) allapot hatirozza meg; a leg-
egyszeriibb esetben, amikor a kezdéallapot nem tartal-
maz semmilyen 0sszefonddast, un. szabad hatarfeltételt
kapunk, azaz minden lehetséges spinkonfiguraciéra 6sz-
szegezniink kell.

A statisztikus fizikai problémara valé leképezés hasz-
nos perspektivat nyujt az 6sszefonddas dinamikdjara
nézve. A felsé hatarfeltétel egy magneses doménfalat
indukal a 0 = + és a 0 = - régidk kozott. A kulcsfontos-
sagli megallapitds az, hogy, a spinek kozotti ferromag-

neses kolcsonhatasok kovetkeztében a -log Pu(?)
= »szabadenergia” aranyos lesz ennek a doménfalnak a
Igy tehat - bar egy ¢° di-
menzi6s Hilbert-térbdl in- 5 N
dultunk - az dtlagolas utan NN >
az eredményt egyetlen bi- Us(®) \ ) {\C\(\ '_ A
naris valtozoéval, g-val jelle- U0~ }m .. @@@@C
mezhetjiik. vo ) ] )\ V) e DO@OSSC
AthZ, hogy meg- = < ¥ > average @
kapjuk a (2) egyenletben Te pa(t)? = I ® B A — D @O®O®®OC
definidlt #,(f) mennyisé- pA T —_— )
get, a fenti éatlagolast az ( DEOLOOEC
aramkor minden kapujara )
kiilon-kiilon el kell végez- Li1innl 3 3 3 & & 3 TRTETIE
nilink, igy ha az aramkor Ut) |- ‘% _”i®
N kapubdl ill, akkor egy -
2N tagbdl 4ll6 sszeget ka- v

punk. Az Osszeg tagjait a
0; = + valtozdkkal inde-
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2. dbra. Leképezés a kvantumillapot tisztasigardl a Haar-féle véletlendramkor-modellben egy klasszikus
spinmodell allapotosszegére (Forrds: [4])
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3. dbra. Az A részrendszer tisztasiganal megjelend statisztikus modell
tipikus konfiguracidi, (a) amikor az eltelt id6 kisebb a részrendszer at-
mér6jénél (az Osszefonddas idében nd), és (b) amikor nagyobb (az
osszefonddas szatural6dik)

feliiletével, vagyis a nagyobb doménfal nagyobb kvan-
tumos dsszefonddasnak felel meg. Ennek a viselkedésé-
ben két kiilonboz6 tartomanyt kiilonboztethetiink meg,
attol fiiggben, hogy a t id6 (amely most a klasszikus
spinmodell térbeli kiterjedését adja meg a domén-hatar-
feltételre merdleges iranyban) kisebb vagy nagyobb-e,
mint az A részrendszer atmérdje.

Az els6 esetben a domén lényegében a feliiletre me-
rélegesen terjed ki a rendszer tombi része felé (3a. dbra),
igy feliletére ~t|0A| ad6dik, ahol |0A| az A régié ha-
tarfeliletének mérete. Ezzel szemben, amikor ¢ sokkal
nagyobb A atmérdjénél, akkor a dominans kontribucié
az, amikor a domén a rendszer feliiletéhez kozel marad
(3b. dbra), és felillete ardnyos |A|-val. EI6bbi annak felel
meg, hogy az dsszefonddas id6ben novekszik, ahogy az
A részrendszert alkot6 részecskék 6sszefonddnak a rajta
kiviili részecskékkel, mig utébbi azt jelzi, hogy az 6ssze-
fonddas szaturalédik, amikor a részrendszer tisztasiga
elérte a lehetséges minimumat.

A két szakasz kozotti atmenet akkor kovetkezik be,
amikor ¢ ~ |A|/|0A|, azaz A dtmérdjével ardnyosan no-
vekszik. Ebbdl definidlhatunk egy un. ,0sszefondda-
si sebességet”, amely az Osszefonddas kialakuldsanak
gyorsasagat jellemzi, és amelynek értéke kiilonbozik a
Lieb-Robinson-sebességtdl (vy < viz). Az egydimen-
zi6s esetben (ahol a statiszikus modell egy kétdimen-
zi6s Ising-modellel analég) az allapotdsszeg egzaktul
kiszamithato és az dsszefonddasi sebesség értéke meg-
hatdrozhaté.

Bar a fenti szamolas a tisztasidgra mint legkdnnyeb-
ben szamolhaté mennyiségre fékuszalt, hasonlé meg-
fontolasok érvényesek az 6sszefonddas mas jellemzdire,
példaul az in. Neumann-entrépidra is. Ennek szamitdsa-
néil az U dramkér sszes hatvanya megjelenik, ami nagy-
ban megneheziti a szamolast, azonban részleges eredmé-
nyek elérhet6ek egy 1/g szerinti sorfejtés alakjaban abban
az esetben, amikor a qudit g dimenzidja végtelenhez tart.
Az igy kapott eredmények alataimasztjak, hogy a Neu-
mann-entrdpidra is érvényes egy doménfalas kép.

Bar ezt a doménfalas képet a Haar-aramkor tulaj-
donsagaibdl vezettiik le, valodi fontossagat az adja, hogy
altalanosithaté mas fizikai rendszerekre is, beleértve a
hamiltoni dinamikat is, amint az numerikus szamita-
sokkal és elméleti megfontolasokkal aldtamaszthato.
Igy tehat a véletlen aramkor 4ltalinos kvalitativ képet
ad, amely a kvantumos dinamika bizonyos univerzalis
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tulajdonsagait ragadja meg. Ehhez hasonl6 kvalitativ
leirasok vezethet6ek le mas fizikai mennyiségekre is.
Osszességében ezek a kvantuminformacié terjedésé-
nek egyfajta ,hidrodinamikai” leirasat adjak (bizonyos
mennyiségek esetén konkrétan klasszikus hidrodinami-
kai egyenletek, pl. aszimmetrikus diffuzi6 alakjat 6ltik).

Varidciok egy témara

Az el6z6 fejezetben vazolt szamolas a véletlen aramko-
rok erényeit illusztralja. Az elmult években tudomanyos
cikkek sokasaga épitett az ehhez hasonlé megfontola-
sokra. Ezek részben a fentihez hasonlé Haar-aramkorok
kiilonb6z6 tulajdonsagait vizsgaljak, részben a modell-
nek olyan modositasait tekintik, amelyek segitségével

Ujabb fizikai effektusok vehet6ek figyelembe. Most ezen
kutatdsi iranyok koziil foglalunk 6ssze néhanyat.

Véletlen dramkdrik és a kvantumfolény. A véletlen uniter
aramkorok nagy szerephez jutottak a kvantum-szdmi-
tastudomanyban is mind elméleti, mind kisérleti szem-
pontbél. Ennek az adott jelentds 16kést, hogy ezek olyan
szamitasi problémakhoz vezetnek, amelyek klasszi-
kus szamitégépen nem szimulalhatéak hatékonyan [5].
Szemben pl. a Shor-algoritmussal, ezek nem kecsegtet-
nek gyakorlati haszonnal, viszont mar a jelenleg elérhet6
kvantumszamitégépeken is megoldhatéak, igy hasznal-
hatok a gépek tesztelésére.

Egy tipikus példa az un. mintavételezési probléma.
Avéletlen aramkor altal létrehozott 6sszefonddott kvan-
tumallapoton méréseket végezve a mérési eredmények-
re egy erésen korrelalt val6sziniiségi eloszlas adodik.
Ezt az eloszlast nehéz reprodukalni egy klasszikus algo-
ritmussal, legalabbis akkor, ha a kvantumallapot kell6en
Osszefont (az aramkor nagy mélységi). Ezen az otleten
alapult a Google kvantumszamitégépes csoportjanak
kisérlete 2019-ben, amelynek kapcsin bejelentették
az Un. ,kvantumfolény” elérését, azaz végrehajtottak
egy olyan szamitast, amelyet dllitasuk szerint a 1étez6
legnagyobb klasszikus szuperszamitoégépek sem tudnd-
nak belathatd id6 alatt reprodukalni [6]. Ezen szdmitasi
problémak vizsgalatanal a fentiekhez hasonlé klasszikus
statisztikus fizikai megfontolasok is szerepet kapnak.

Kvantumkdosz. Az (1) Schrodinger-egyenletet jol jel-
lemzik a H Hamilton-operator sajatértékei és sajatvek-
torai. A fent vizsgalt véletlen aramkdrben ezek nem jol
definialtak, hiszen az id6fejleszt6 operator id6ben folya-
matosan valtozik. Ezt azonban orvosolhatjuk, ha a mo-
dellt 4gy modositjuk, hogy csak térben legyen véletlen-
szer(, id6ben nem. Ekkor az dramkér U = V' alakd, ahol
V egy csupan néhany rétegbdl 4ll6 véletlen uniter dram-
kor, ami idében determinisztikusan ismétlédik. Ekkor
V spektruma hasonléan jellemzi a dinamikat, mint a szo-
kasos esetben a Hamilton-operatoré.

A fenti megkozelités lehet6vé teszi az Un. kvantum-
kdosz kérdésének vizsgalatat. Ez azt mondja ki, hogy
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egy altaldnos (nem integralhat) kvantumos rendszer
esetén a sajatértékek spektrumanak bizonyos tulaj-
donsagai megegyeznek a teljesen véletlenszerd (térben
nem lokalis) véletlen matrixokéval [7].” Bar ezt a sejtést
sok numerikus szdmitas timasztja ala, a véletlen dram-
korok szolgaltattdk az egyik legels6 olyan konkrét mo-
dellt, amelyben analitikusan is belathato volt a kaotikus
spektrum megjelenése egy térben lokalis kolcsonhata-
sokkal rendelkez6 rendszerben [8]. Ezen tdlmenden a
véletlen aramkorok spektruma olyan strukturat is tar-
talmaz, amely a térbeli lokalitds kovetkezményeként
talmutat a véletlen matrixok szokasos elméletén, viszont
relevans a lokdlis Hamilton-operatorok megértése szem-
pontjabol.

Szimmetridk és megmaradd mennyiségek. Mint arra mar
utaltunk, a véletlen dramkoros modell egyik hidnyossaga
az energiamegmaradas elvének sériilése. Az (1) Schro-
dinger-egyenlet esetében - hdla a Hamilton-operator
lokalitdsanak - az energiastiriiségre egy lokalis konti-
nuitasi egyenlet érvényesiil. Ez a rendszer dinamikaja-
nak fontos aspektusa, amelyet a fenti aramkorés model-
lek nem ragadnak meg (ez igaz még az imént targyalt,
idében determinisztikus dramkorokre is).

Bar az energiamegmaradast nem tudjuk az dram-
korés modellben helyreallitani, az ezzel jaré fizikai
effektusok egy jelentds részét igen, ha az energia helyett
valamilyen mas folytonos megmaradé mennyiséggel
ruhizzuk fel 6ket. Ha példaul a részecske allapotinak
q lehetséges értékére ugy gondolunk, mint egy spin z
komponensének lehetséges allapotaira, moédosithatjuk
az aramkort alkotd kapukat olyan médon, hogy a rend-
szer teljes ,magnesezettsége” a z irinyban megmarad-
jon az id6fejlédés soran.® Ekkor a magnesezettségre
egy kontinuitasi egyenlet érvényesiil, transzportjat egy
egzaktul levezethetd diffuzids egyenlet adja meg.

A megmaradé mennyiség jelenléte a kvantumos kor-
relaciok dinamikajat is befolyasolja. A tisztasag vizsga-
latahoz elvégezhet6 egy, az el6z6 fejezetben targyalt-
hoz hasonl6 leképezés egy statisztikus fizikai modellre,
amely azonban joval bonyolultabb; a klasszikus energia
komplex lesz (igy szigoru értelemben véve ez nem te-
kinthet6 statisztikus fizikai modellnek). Egzakt analiti-
kus megoldas ebben az esetben nem ismert, de belatha-
t6, hogy a tisztasag viselkedése kvalitativan megvaltozik
a megmarad6é mennyiség hatasara: diffaziv —log P, (?)
~ 4t viselkedést mutat a Haar-féle véletlen dramkorben
latott ballisztikus -log P4(¥) ~ ¢ helyett [9]. Numerikus
szamitdsok szerint hasonl6 szubballisztikus viselkedés
figyelhet6 meg hamiltoni rendszerekben is.

Meéréssel indukdlt fazisdtmenetek. Az eddigiekben zart
rendszerek uniter id6fejlédését vizsgaltuk. Modosithat-

7 Ezzel kapcsolatban ldsd Takacs Gabor cikkét a Fizikai Szemle 2025.
aprilisi szamaban.

8 Ez annak felel meg, hogy a kapukat leir6 uniter matrixok blokkdia-
gonalisak a megfeleld bazisban.
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juk modelliinket tgy, hogy figyelembe vegye a kdrnye-
zettel val6 kolcsonhatdsbol szarmazé nem uniter effek-
tusokat is. Ezeknek két fajtajat kiilonboztethetjiik meg.
Az egyik a kontrollalatlan zaj, amely sordn az informacié
arendszerbdl a kornyezetbe tavozik, és az egész rendszer
allapota tisztabol kevertté valtozik. A masik, amikor a
kisérletez6 maga végez méréseket a rendszeren; ekkor
az allapot tiszta marad, de a kvantummechanika mérési
axioméjanak értelmében nem uniter mddon fejlédik.

Kiilonosen sok figyelmet kapott az elmult években
az utdbbi eset vizsgalata, és az ezzel kapcsolatos ,,mé-
réssel indukalt fazisaitmenet” fogalma. Ennek alapja az
uniter kapuk és az egyes quditeken végrehajtott mérések
hatdsai kozotti versengés. Mig az el6bbiek a fent vazolt
moddon 6sszefonddast generalnak, addig a mérések a ré-
szecskék kozotti 0sszefonddas csokkenéséhez vezetnek
(pl. ha minden részecskét megmérnénk, akkor egy telje-
sen O0sszefonddds-mentes szorzatallapotot kapnank). Ez
a versengés egy fazisatalakulashoz vezet annak fiiggvé-
nyében, hogy a quditek mekkora hanyadat mérjilkk meg
id6lépésenként [10]. Ha ez a hanyados kicsi, a dinamika
kvalitativan hasonlit a tisztin uniter esethez, és hosszu
id6 utdn az A részrendszer Osszefonddasa aranyos lesz
a méretével: lim, .. (-logP,(¥)) ~ |A|. Ezzel szemben,
ha az id6lépésenként megmért részecskék szama meg-
halad egy kritikus hdnyadost, akkor barmilyen sokaig
varunk is, az 0sszefon6dds csupan a részrendszer hata-
ranak méretével fog skalazodni: lim, ..(-log Pa(®)) ~
|0A]. A két tartoményt egy masodrendd fazisatalakulas
valasztja el, amely a megszokott fazisatalakulasokhoz
hasonldéan kritikus exponensekkel jellemezhetd. Az
Osszefonddas mértékének és jellegének ilyen hirtelen
fazisatmenetei nagy érdeklédést keltettek, és mas kon-
textusokban is alkalmazasra talaltak.

Zar6 gondolatok

A véletlen kvantumos aramkorok a kvantummechani-
kai id6fejlédésnek nagyon sokoldald modelljei. Veliik
a dinamika lényeges aspektusai (lokalitds, megmaradé
mennyiségek, mérések stb.) figyelembe vehet6k minden
mas részlet elhanyagolasa mellett tgy, hogy a véletlen
matrixok egy megfelelé osztalyara atlagolunk. Ennek
elénye kettds: egyfeldl a véletlen aramkor atlagos visel-
kedésének vizsgalata sokszor egyszer(, egzaktul (vagy
majdnem egzaktul) megoldhaté problémakhoz vezet,
masfel6] olyan univerzalis tulajdonsagok ragadhaték
meg, amelyek az id6fejl6dések valamilyen nagy oszta-
lyat egységesen jellemzik. Ezen az dton eljuthatunk a
kvantuminformdcié dinamikéjanak kiilonféle univerza-
litasi osztdlyaihoz, amelyeket egyszert hidrodinamikai
jellegli egyenletekkel irhatunk le, a klasszikus statisz-
tikus fizikabol vett fogalmakkal jellemezhetiink, jelen-
t6sen megkonnyitve a fizikai intuici6 kialakitasat. Ezek-
nek az univerzalitasi osztalyoknak (és az Gket elvalaszto
fazisatmeneteknek, pl. a méréseket is tartalmazé model-
lek esetében) feltérképezése tovibbra is aktiv kutatasi
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teriilet, amelyben a véletlen aramkoros modellek kulcs-
szerepet jatszanak. Egyszersmind a véletlen aramko-
rok 0sszekotd kapocsként szolgalnak a fizika és a kvan-
tum-szamitastudomany kozott, ahol az egyik teriileten
felmeriil6 kérdések egyre tobbszor talalnak visszhangra
(és id6nként megoldasra) a masik teriileten.
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SZUPRAVEZETO KVANTUMARAMKOROK A BME-N

Az elmult években a kvantumszamitégép-architektu-
rak robbandsszer fejlédésen mentek keresztiil, és olyan
specialis problémakat lehet velitk mar most megcélozni,
amik klasszikus szamitégépekkel komoly kihivast jelen-
tenek - ahogy ez a Fizikai Szemle jelenlegi szamanak
tobb cikkébdl is kideriil. Az egyik legperspektiviku-
sabb irdny a szupravezet$ aramkdorokre épit, ezekrél egy
Osszefoglalas Gyenis Andras cikkében talalhaté. Ebben a
cikkben el6szor roviden bemutatjuk a mailegnépszertibb
architektira, a transzmon qubit alapjait és a méréseket,
amelyeket a Kvantuminformatika Nemzeti Laboratori-
um keretében végeztiink, majd wjfajta, szilardtestfizikai
alapt, topologikus jelleggel bir6é qubitek kutatasat ismer-
tetjik.

A qubitek miikodése a kvantummechanika térvénye-
in alapul, ahol egy kétallapott rendszer nemcsak az Gn.
bazisallapotokban - az alapallapotban (0) vagy a ger-
jesztett allapotban (1) - lehet, hanem ezek tetszéleges
szuperpoziciéjaban. Ezt a Bloch-gdmbbel lehet szemlél-
tetni, ahol a qubit allapotat a gdmb tetsz6leges pontjaba
mutatd vektor jellemzi — szemben a klasszikus bitet jel-
lemz6 két allapottal, ami az északi és déli saroknak felel

Kiirtossy Olivér Csaba a BME Fizika Tanszé-
kének posztdoktori kutatdja, a HUN-REN
Nanoérzékel6k Csoport munkatarsa. Korab-
ban Nemzeti FelsGoktatdsi, Zemplén Gy6z6
Ifiisagi, valamint UNKP &sztondijat nyert.
Kutatasi teriilete az alacsony dimenzids
szupravezet$-félvezetd hibrideken alapuld
nanoaramkorok kisérleti vizsgalata.
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meg (la. dbra). Az északi (1) és déli sarkot (0) jelent6 két
allapot, aminek szuperpoziciéjaként az Gsszes allapot
el6allithat6, nagyon sokféle fizikai megvalositassal bir-
hat. A transzmon qubit szupravezetd alagutatmeneteken,
un. Josephson-atmeneteken alapszik [1]. A transzmon
geometridban egy kis méret{i szupravezetd fém szigetet
egy vékony, szigeteld réteg valaszt el egy masik szuprave-
zetOtol. A szigeteldn az elektronok kvantummechanikai
alagutazassal 4t tudnak jutni. Pontosabban, mivel a veze-
tési jelenségben részt vevo elektronok szupravezet6kben
Cooper-parokba rendez6dnek, ezek a parok alagutaznak
at a Josephson-atmeneteken. A qubit két bazisillapota

Csonka Szabolcs a BME Fizika Tanszék docense
és tanszékvezetdje, illetve a Szupravezet Nano-
elektronika Lendiilet Csoport vezetSje. A Baze-
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posztdoktori kutatasai alatt kezdett foglalkozni a
félvezetG-szupravezetd heterostuktirdkkal, majd
hazatérve egy ERC Starting Grant segitségével
kezdte el kiépiteni a mintdk készitéséhez és méré-
séhez sziikséges infrastruktarat. Késébb a Kvan-
tuminformatika Nemzeti Laboratorium keretein
beliil vezette a szupravezetéqubit-kutatdsokat. Az
elmult évet az Aacheni Egyetemen tolt6tte Hum-
boltd-6sztondij keretében.

Makk Péter a BME Fizika Tanszék docense,
tanszékvezetd-helyettese, a MTA-BME ,Kor-
reldlt van der Waals Heterostruktardk” Kuta-
técsoport vezetdje. Posztdoktori kutatdsait a
bazeli egyetemen végezte, ami utdn Marie Cu-
rie-0sztondijasként tért haza. Sok egyéb pa-
lydzata mellett nemrégiben elnyerte az ERC
Consolidator pélyazatat. Kutatasi teriilete
magaban foglalja a szupravezet$-elektronika
mellett a spintronikat és az Gj fazisok vizsga-
latat kétdimenzids anyagokban.
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a gyengén dteresztd
tlikrok szerepét, és a ko-
2€ps6 vezet6ben alakul-
nak ki a centiméteres
hullamhosszu allohulla-
mok. Mivel az aramkor
szupravezet6bdl  ké-
sziil, a belsé veszteségei
nagyon kicsik, és ha a
kapacitasokat megfe-
lel6en tervezik, nagy
josagi tényezdjli rezo-
natorok johetnek létre,
ahol a mikrohullamu
fotonok akar 105-szor
is oda-vissza pattoghat-
nak, miel6tt kiszaba-
dulnak a rezonatorbdl.

1. dbra. A transzmon qubit elve. a) A qubit dllapotanak szemléltetése a Bloch-gémbon. ¥ a ,0” és ,,1“ baziséllapo-
tok szuperpozicidja, amelyek a @ és @ szogekkel parametrizalhatok. b) A transzmon qubit helyettesit6 kapcsolasi
rajza. A Josephson-dtmenetek egy kapacitassal és hangolhat6 induktivitassal modellezhetSk (z61d), amit egy kiol-
vasoé rezonatorhoz csatolnak (kék). c) A qubit allapotdnak meghatdrozasa a rezonator frekvencijanak vizsgalata-
val. A transzmisszid rezonancia- (szaggatott) és a fazisgorbéje (folytonos) eltéré az alapéllapotban és a gerjesztett
dllapotban. d) *He/*He keveréses hiitérendszer belseje (BME Fizika Tanszék). A folyékony hélium keringetése

révén a fémvaz lehil, amelyhez a mintdk termalizdlédnak

lehet példaul egy Cooper-par helyzete is: az informaciot
ez esetben az hordozza, hogy a bal, vagy a jobb oldalon
helyezkedik-e el. Ezt hivjak toltésqubitnek. A transz-
mon qubit ennek egy valtozata, ahol nem egy kiszemelt
Cooper-par pozicidjaba, hanem sok Cooper-par kollek-
tiv hullamfiiggvényébe van az informaci6 koédolva.

A transzmon qubiteket sokszor dramkori helyettesi-
t6 képpel irjak le (1asd Gyenis Andras irasat). A szupra-
vezetSk kozt alagutazassal atjutd elektronok dltal szalli-
tott aramhoz nem tartozik fesziiltségesés, az atmenetnek
nulla az ellenallisa. Azonban a Josepshon-itmenetekhez
lehet egy induktivitdst is tarsitani, ami a két szupravezetd
kozt levé kapacitdssal egyiitt egy rezgékort eredményez
(1b. dbra, 261d rezgbkor). Ez azonban egy veszteségmen-
tes, ugyanakkor nem harmonikus rezgékor. Ez azért
fontos, mert kvantummechanikai rendszerként kezelve
arezgdkort, diszkrét de nem ekvidisztans energiaszintek
jellemzik, amelyek koziil a két alsé szintet azonositjuk a
qubit két bazisallapotaval, az alap- és gerjesztett allapot-
tal. Mivel az alsé két szint energiakiilonbsége eltér mas
szomszédos szintek energiakiilonbségétdl, kellGen sziik
spektrumt mikrohullamu sugarzassal ezek kozt atmene-
tek gerjeszthet6k anélkiil, hogy a tobbi szintre gerjesz-
tenénk a rendszert (hasonldan az atomi nivok esetéhez).

Az dramkorok kiolvasdsihoz mikrohullima szup-
ravezetd rezonatorokat hasznilnak (1b. dbra, kék rez-
g6kor). Ezek a koaxidlis kiabelhez hasonlé geometriaval
késziilnek: egy kozéps6 vezetékkel és az azt koriiloleld
foldsikkal, azonban itt sik geometridban (2a. dbra). Ah-
hoz, hogy egy rezonator j6jjon létre, a kozépsé veze-
t6t altalaban kapacitassal szakitjak meg. Ha ezt optikai
rezonatorokhoz hasonlitjuk, akkor a kapacitasok jatsszak

A nagyon nagy josagi
tényez6  eredménye-
képp a rezonitor éles
rezonanciaval bir. Ez
lathat6 az Ic. dbrdn [2].
A qubiteket a rezona-
torhoz kozel helyezve,
a rezonator elektromos tere kolcsonhatést 1étesit a qu-
bit és a rezonator kozt, hasonldéan az elektromos térbe
helyezett atomokhoz. Ennek eredményeképp a rezond-
tor rezonanciafrekvencidja mds és mas lesz, ha a qubit
0 vagy 1-es allapotban van, igy a rezonatort vizsgalva a
qubit allapotat is meg tudjuk hatarozni.

A qubiteket rddiofrekvencids terekkel lehet mani-
puldlni: a qubit a bazisallapotok energiakiilonbségének
megfelel6 (Larmor- vagy Rabi-) radidfrekvencids térrel
jol meghatarozott ideig besugarozva a Bloch-gdmbon
tetsz6leges allapotba forgathaté. Ez a technika jol ismert
amagneses rezonancias mérésekbdl [3].

A BME Fizika Tanszékének kvantumeletronika-la-
borjaban is vizsgaltunk transzmon qubiteket, melyeket
a goteborgi Chalmers Miiszaki Egyetemtdl egy kozos
projekt keretében kaptunk. Az altalunk vizsgalt aramkor
a 2a. dbrdn lathat6. A qubit forgatasat jellemz6 un.
Rabi-mérésnél (2b. dbra) azt mérjiik, mekkora valészind-
séggel lesz a qubit az alap- és a gerjesztett dllapotban
kiilonb6z6 hosszusagu besugarzas utan. A periodikus jel
a qubit x tengely koriili forgatasat jellemzi, mig a forgatas
sz0gét az impulzus hossza adja meg. A forgatas utani mé-
rés a kvantummechanika szabédlyainak megfelelen, 0-t
vagy l-et fog adni, az la. dbrdn jelolt éllapot esetén |a|?
és |B|? valdszintiséggel. A mérést sokszor elvégezve kap-
juk meg a 2b. dbrdn lathat6 gorbét.

A kvantumszamitdgépek nagy kihivasa, hogy a qubi-
tek a kornyezethez csatolédnak, ami informdci6vesztés-
hez is vezet. Az informacidvesztést altaldban két szam-
mal jellemzik: a T} relaxacids id6vel, ami azt mondja meg,
milyen id6skalan relaxal a qubit az alapallapotba, illetve
a T, fazisvesztési id6vel, ami az la. dbrdn a ¢ polarszog
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2. dbra. Transzmon qubit mérése. a) Transzmont tartalmazé chip képe. A nagyitds az dramutaté jarasinak megfeleléen né: a bal
fels6 képen a mintatarté fej, majd a rezondtor, és maga a Josephson-atmenet lathatd. b) Qubit Rabi-mérése. A mikrohulldimu elekt-
romos térrel valo besugarzassal a ,0” és ,,1” bazisallapotok kozott folytonos forgatasok hajthatok végre, az oszcillicio pedig a relaxa-
ci6 miatt cseng le. ) A relaxacios id6 mérése impulzusokkal. A kiolvasas el6tt eltelt id6 fiiggvényében a rendszer T karakterisztikus

id6vel relaxal (ahol Q a rezondtorrol visszavert jel 90 fokkal fazistolt komponense)

értékének randomizalasat, azaz a sikbeli polarizaci6 el-
vesztésétirjale. Ezek viszonylag konnyen mérheté meny-
nyiségek; példaul a 7) meghatarozasahoz a qubitet az 1-es
allapotba gerjesztjiik, és megadott id6é utan kiolvassuk.
Ezt a mérést elvégeztiik a transzmon qubitre (2¢c. dbra),
ahol a mért Q amplitidé az alapallapot bet6ltési valo-
szinlségével aranyos. A T, id6skala kb. 60 ps-nak adédik
ebben a mérésben. Hasonlé nagysigrendd idé adoédik
transzmonok esetén a T,-re is.

Baratranszmon informdciévesztését jellemz6 T és T,
id6skalak 60 us-os értéke nagyon révidnek hat, érdemes
ezt az értéket kontextusaban vizsgalni. Egyrészt ma mar
akar masodperces T; és T, id6skaldk is el6fordulhatnak
kiilonb6z6 szilardtestfizikai architektirakban [4], mig az
els6 qubiteket ns-os id6skalak jellemezték. Ez a hatalmas
fejlédés nagyon sok fejlesztés eredménye, amelyek egy
része anyagtudomanyi jellegi volt, ami jobban definialt,
tokéletesebb mintak létrehozasara koncentralt, mig egy
masik része a kdrnyezettel val6 kolcsonhatasok megérté-
sét, és azok csokkentését tiizte ki célul. Masrészt a qubit-
beli informéci6 varhat6 élettartamat a rajta elvégzendd
logikai miveletek hosszahoz érdemes viszonyitani; ez a
mai kvantumszamitégépeken kb. 10 ns.

Ma a szupravezet6 qubitek kutatasa két iranyban ha-
lad. Az egyik, hogy a meglévé qubiteket — mint példdul
a transzmon - optimalizaljak, hogy minél tobbet integ-
ralhassanak egy chipre, azaz egy aramkorbe. Ez azért is
fontos, mert sok qubit egyiittes kvantumallapotait hasz-
nalva logikai qubitként, hibajavit6 algoritmusokkal ke-
zelhet6 az informaciovesztés [5].

A misik irany, amir6l a cikk masodik része szdl, és a
mi kutatasainkat is motivalja, hogy olyan ujfajta qubitar-
chitektirakat hozzunk létre, amelyekben az informécio
hosszabb ideig megdrizhetd. Ez egyrészt elérhetd a fen-
tebb targyalt épit6kovek (Josephon-atmenet, kapacitas,
induktivitas) hasznalatdval, ha azokbol bonyolultabb,
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Osszetettebb aramkoroket, ugynevezett védett (pro-
tected) qubiteket készitiink [6]. Masrészt Gjfajta épit6-
kovekkel un. topologikus qubiteket lehet 1étrehozni,
amik valamiféle bels6 védelemmel birnak az informacio-
vesztéssel szemben [7, 8]. Ez a bels6 védelem a rendszert
ellenallova teszi a fizikai paraméterek inhomogenitasai-
val, akdr a mikodés kozbeni lassa valtozdsaival szemben
is. Ez hasonlit arra, ahogy a geometriaban (topologia-
ban) a kiilonb6z6 geometriai objektumok topologikus
tulajdonsagai robusztusak: mondjuk, a bogre a fankba
aprobb deformaciok segitségével atvihetd, de a benniik
1év6 lyukak szama nem valtoztathaté meg. A topologikus
qubiteknél ezek a geometriai tulajdonsagok altalaban a
részecskék hullimfiigvényére vonatkoznak, példaul az
impulzustérben.

Bar topologikus qubitet még nem sikeriilt megvalé-
sitani (a sajtokdzleményekkel ellentétben még a Micro-
softnak sem, legalabbis err6l még nem kozoltek tudo-
manyos eredményt), de sok elméleti javaslat létezik erre.
Ezek a javaslatok altaldban Ugynevezett mesterséges
atomokbdl (kvantumpdttyok), spin-palya kolcsonhatast
erdsité anyagokbdl és szupravezetSkbdl épitkeznek [9].
A mi kutatdsaink ezen rendszerek alapvetd tulajdonsa-
gainak megértésére koncentralnak, ahol a kvantum-
pottyoket félvezetd InAs struktiraban hozzuk létre.

Kutatdsaink a kovetkez6 menetrend szerint zajlanak.
Az elméleti modelleket altalunk tervezett és megval6-
sitott aramkorokon teszteljiikk. Ehhez platformként vagy
kvazi-egydimenziésnak tekinthet6 InAs-nanopalcak-
bol, vagy félvezeték hataran kialakitott kétdimenzids
elektrongazokbdl indulunk ki. Ahhoz, hogy az elekt-
ronokat a félvezet$ egy szilik térrészébe, azaz egy kvan-
tumpdttybe csapdazzuk, a tranzisztoroknal is hasznélt
ugynevezett kapuelektrodakat vesziink igénybe. Ezekre
a kapuelektroédakra negativ fesziiltséget kapcsolva egy
elektrosztatikus potencialgatat hozhatunk létre az elekt-
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csony hémérsékleti infra-
strukturat alkotnak. A ke-
veréses hiit6ket a vilagon
harom cég gyartja, egye-
dileg késziilnek el, és épi-
tésiik egy évet igényel. A
hiitégép bels6 térfogatat
az 1d. dbrdn lathaté ara-
nyozott tarcsa alaku lapok
osztjak részekre, fokoza-
tokra. A lapok a rendszer-

3. dbra. Kvantumpdttyon alapulé nanodramkorok. a) Szupravezetdvel (kék) és normal fém (sirga) elektrodak-
kal kontaktalt nanopalca dontott elektronmikroszkopos felvétele (lent). A kvantumpétty sematikus képe bal
fent, a szerkezeti dbraja jobb fent lathaté. A hangolast a vékony kapuelektrédak biztositjak. b) Szupravezetd

nek a kornyezett6l vald
elszigetelését biztositjak:
fentrol lefele haladva a kii-

rezondatort és a hozzdcsatolt, pirhuzamos Josephson-dtmenetekbdl felépiil6 nanodramkort tartalmazé chip

(balra). Az atmenetek (jobbra) k6zotti hibridizacié képezi az Andrejev-molekulat

ronok szamadra, igy két ilyen kaput hasznalva egy kvan-
tumpotty alakithaté ki egy nanopalca esetén (ahogy
kétdimenzids elektrongaznal is). A kis térfogat kovet-
keztében - akarcsak valédi atomoknal - az elektronok
diszkrét nivokat tolthetnek be, igy tovabbi elektrodakat
hasznalva ezen energiaszinteket hangolni tudjuk. Ahhoz,
hogy elektromos méréseket tudjunk végezni, a palcakra
vezet6 tovabbi elektrodakat készitiink, melyek egy része
a szupravezetés létrehozdaséért is felelGs.

Az dramkoroket a chipgyartasban is hasznalatos elekt-
ronsugar-litografids modszerekkel hozzuk létre a HUN-
REN EK MFA tisztaterében. Az aramkort CAD-szoft-
verekkel megtervezziik, majd a sziliciumlapkat (amire
a minta késziil) egy érzékeny lakkréteggel vonjuk be. A
megtervezett rajzolat mentén elektronnyalabbal vilagit-
juk meg a mintat, ami utan szelektiven el tudjuk tavoli-
tani a lakkréteget, és egy kovetkezd 1épésben ezekre a
helyekre fémet (Au, Al, ..., amire sziikség van) tudunk
parologtatni. Egy ilyen minta (3. dbra) elkészitése 6t-hat
ilyen 1épéssorozatbol all, és egy-két hetet igényel. Ez-
utdn a BME Fizika Tanszékén, a laborunkban a mintét
vékony, 100 pm-es vezetékekkel kotjiik ki a chiptartd
aramkorokre, melyek a mérérendszerhez tovabbi vezeté-
kekkel kapcsolodnak.

Ahhoz, hogy az aramkorokben kvantumbites visel-
kedést tudjunk kimérni, azokat ultraalacsony hémérsék-
letre, par 10 mK-es tartomanyra kell hiiteni. Ennek egyik
oka, hogy az altalunk hasznalt szupravezet6ben, az alumi-
niumban, csak 1 K alatt alakul ki a szupravezetd éllapot.
Masrészt a mintat minél jobban szeparalni kell a kornye-
zett6l — példaul a magas hdmérsékleten nagyobb intenzi-
tassal megjelend racsrezgésekt6l. Végiil a qubitek esetén
arra is figyelni kell, hogy ne j6jjon létre a gerjesztett alla-
potnak egy elhanyagolhaté aranyt betoltése csupan a hé-
mérséklet hatasara, illetve, hogy a szupravezet6 rezonato-
rokban ne jelenjenek meg termikusan gerjesztett fotonok.

Az dltalunk hasznalt hiitérendszer egy un. keveréses
hiité (dilution fridge, 1d. dbra), ahol a hiités folyékony *He
és ‘He keverése révén torténik. A két keveréses htit6gé-
plink és egy He-cseppfolyositd, mely a BME kampuszan,
kiilon épiiletben van, Magyarorszagon egyediilallé ala-

16nb6z6 fokozatok egyre
hidegebbek. Az alacsony
hémérséklet eléréséhez fontos, hogy az elektromagneses
és egyéb zajokat, hémérsékleti sugarzast, minimalisra
csokkentsiik. Ehhez a a mérGelektronika egy részét is
(példaul erésitoket) valamelyik hiitott fokozaton tartjuk,
a tarcsakhoz rogzitve, hogy az dltaluk létrehozott elekt-
ronikai zajt is minimalizaljuk.

Két elkésziilt minta lathat6 a 3. dbrdn. A bal alsé elekt-
ronmikroszképos képen jol kivehet6k a fési fogaihoz
hasonléan elhelyezkedd kapuelektrédak, melyek a rdjuk
helyezett nanopalcakban hozzdk létre a kvantumpéttyot
(lasd a bezaré potencialt, illetve a sematikus nivoszerke-
zetet a 3a. dbrdn). A kék elektroda felelGs a szupravezet6
elektronparok félvezetGbe injektalasiért. Ebben az dram-
korben a szupravezet6 két oldalan két kvantumpotty is
létrehozhaté - ezek energiasajatallapotai hibridizalhat-
nak a szupravezet6 elektrodan keresztiil. Szerkezetét te-
kintve egy ilyen struktura a hidrogénmolekulaval anal6g;
a kvantumpo6ttyok toltik be a hidrogénatomok szerepét,
mig a csatol6 kdzeget a szupravezetd kondenzatum bizto-
sitja a vakuum helyett [10]. Ezt az in. Andrejev-molekulat
el6szor nekiink sikeriilt megmutatnunk [11], és ez lehet
a topologikus qubitek alapvetd épit6kove. Egy hasonlo
rendszer lathat6é a 3b. dbrdn, ahol a kvantumpottyoket
oldals6 kapuelektrodakkal lehet hangolni, és hasonldéan
a transzmon architektirahoz, az Aramkor egy szuprave-
zetd rezonatorhoz csatolddik. Ez az aramkor két djfajta,
un. Andrejev-qubit csatolasat valdsithatja meg.

Az elmult években a kvantumszamitégépek kutatasa
robbandsszerd fejlédésen ment keresztiil. Bar a kutata-
soknak rengeteg mérnoki aspektusa is van, az Gjfajta qubi-
tek vizsgalata és megértése a szilardtestfizika és az anyag-
tudomany legizgalmasabb kérdéseihez kapcsolddnak,
és a kovetkez6 évtizedben (vagy évtizedekben?) a fizika
meghataroz teriiletét fogjak képezni.
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A kival6 fizikus és vilaghires ismeretterjeszté nagy faba
vagta fejszéjét ezzel a konyvvel. A Bevezetésben felirja
Einstein egyenletét, amely a testek graviticiés mozgasat
a térid6 gorbiiletével értelmezi, azt pedig dsszekapcsolja
a tér energia-impulzus eloszlasaval, azaz az energia-im-
pulzus tenzorral. Utana megigéri, hogy a konyv elolvasa-
sa utan a kozépiskolas fizikaban tdjékozott olvasé érteni
fogja az egyenletet. Azt is elmondja, hogy az értés egy-
altalan nem jelenti azt, hogy az egyenletet meg is fogjuk
tudni oldani; ahhoz nagyon mély ismeretek kellenek, de
tudni fogjuk, hogy mi mit jelent benne. Ezen a ponton
megjegyzi, hogy mély szakadék tatong az altalanos is-
meretterjesztd irodalom és a tankonyvek kozott: az elsé
feltételezi, hogy az olvas6t nem érdeklik a matematikai
alapok, az utébbi meg arra szolgal, hogy az olvasé eljus-
son az egyenletek megoldasaig. Ezt probalja itt athidalni.

A szimmetriakkal és megmaradasi torvényekkel kez-
di, majd a masodik, Viltozds fejezetben nekilat felépiteni
az alapveté matematikai apparatust. Vektorok, fiiggvé-
nyek, differencialas és integralas, differencialegyenletek.
A Dinamika fejezet kovetkezik, a mozgast kivalté erdk
leirasa, Newton torvényei és a mechanika energiaalapa
leirasa mindezt a harmonikus oszcillatorral szemléltet-
ve. Bevezeti a fazisteret és a konfiguracios teret, a legki-
sebb hatds elvét és a Lagrange-fliggvényt. A Tér fejezet
felépiti a Hamilton-féle mechanikat és kimondja a loka-
litas elvét, mikozben bevezeti a parcialis derivaldst. Az
Idé fejezet a fejlédést targyalja a térid6-tiikrozési (CPT)
invarianciaval és az entrépidval. Itt logikusan a Téridd
kovetkezik: az elektromdignesség Maxwell-leirasa és a
relativitas elve az ikerparadoxonnal (amely valdjaban
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nem ellentmondas). El6keriil a horizont és a fénykup, a
Lorentz-transzformacié és a négyesvektorok. Eddig te-
hat lényegében az egyetemi fizika-alapképzés elméleti
tananyagat striti egy fél konyvbe a szerz6.

Nagy ugras kovetkezik a Geometria fejezettel. Els6-
ként természetesen az euklideszi stkgeometriat targyalja.
Innen megy at a gorbiiltekre, Bolyait is megemlitve, majd
az Einstein dltal is hasznalt Riemann-geometriara. A met-
rika kovetkezik, mikozben bevezeti a matrixokat (nem a
»>Matrix” film vilagat, persze) és a tenzorokat, valamint
a skaldaris, vektor- és tenzormezdket és miveleteiket. Itt
tér vissza a legkisebb hatas elvéhez, amellyel gorbiilt tér-
ben a geodéziai palyak mentén kozlekediink. Ezutan mar
tényleg a Gravitdcio fejezet jon. Itt az ekvivalencia elve
van soron, az elemi Gthossz a Minkowski-metrikdaban és
a taguld vilagegyetem, majd az energia-impulzus tenzor
és végiil maga az Einstein-egyenlet a Ricci-tenzorral. Az
utolsé fejezetet teljes egészében a fekete lyukaknak szen-
teli, még a gravitdcios hullamokat is targyalja.

A szerz§ tehat beviltja igéretét: valdban eljut kozép-
iskolai alapokrdl az Einstein-egyenletig. S6t sokkal to-
vabb. Nekem, a fizikusnak az eleje kissé unalmas volt, de
kozben remek eszmefuttatasokat olvastam. Kérdés azon-
ban, lesz-e egy kozépiskolas fizikan nevelkedett, egyete-
mi fizikat nem tanult érdekl6d6nek elegendd kitartdsa az
egészhez. Ilyenkor a Hawking-szam jut eszembe, amely
azt mutatja, hanyan olvasnak végig egy konyvet azok
koziil, akik belekezdtek. Stephen Hawking leghiresebb
konyve, ,Az id6 rovid torténete” allitdlag 6%-ot kapott.
Carroll mive ezzel egyiitt is nagyon értékes, barki sza-
mara olvasasra érdemes.
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A kvantumok vilaga, el6adas-sorozat 2025. szeptemberben
az MTA XI. Fizikai Tudomanyok Osztalya szervezésében

2025-ben tnnepli az emberiség a kvantumelmélet sza-
zadik sziiletésnapjat (https://quantum2025.org/). Ez az
egykor ezoterikusnak, a mindennapoktél tavolinak tiné
tudomanyag az elmult évszazadban atalakitotta a vilag
arculatat. Nemcsak a természettudomanyon, ezen beliil a
fizikan beliil okozott személeti forradalmat és nyitott meg
szamos gyokeresen Uj kutatasi iranyt, hanem a ra épiil6
modern technolégia behatolt a mindennapi életbe is -
elég az informatika széles kori tarsadalmi hatasaira utalni.

A kétszaz éves Magyar Tudomanyos Akadémia Fizikai
Osztalya tehat nem koszontheti méltobb modon a ket-
t6s évforduldt, mint azzal, hogy a tudomany irant ér-
dekléd6knek a kvantumelmélet alapfogalmai, furcsa és
a koznapi szemlélet szamara nehezen elfogadhaté gon-

dolatvilaga mellett bemutatja a kvantumfizikara épiilé uj
tudomanyagakat is a kvantumkémiatol a részecskefizi-
kaig, valamint a kvantumelmélet eredményeit gyakorlati
alkalmazasokra valtd modern technolégiat a lézerfizikatdl
a sugarbioldgidn at a kvantuminformatikaig.

A jubileumi el6adis-sorozat az MTA Nagytermében
lesz, 2025. szeptember 3. és 29. kozott. A 12 el6adést az
egyes teriiletek kival6 szakemberei tartjak, a tudomanyos
hitelesség mellett a kozérthetség szempontjait is figye-
lembe véve. A sorozat el6adasainak néz6i és az eléadasok-
rol késziilt videdkat megtekint6k atfogd képet kaphatnak
a huszadik szazad egyik legnagyobb tudomanyos attoré-
sérdl, valamint az immar termore fordult kvantumelmélet
21. szazadi gytimolcseirdl és varhaté eredményeirdl is.

Az el6adasok részletes programja és a regisztracio:
https://mta.hu/kvantumok-vilaga-2025

Felhivjuk a kisérd tandrok figyelmét a csoportos regisztrdcio lehetdségére, melynek vilasztdsdval
elegendd a kisérd tandr adatait, tovdbbd az eldaddsra vele érkezd didkok szdmdt megadni.

— Cserti
Jozsef (ELTE), 2025. szeptember 3.

— Kiirti Jeno
(ELTE), 2025. szeptember 3., 18.00

— Takdcs Gabor
(BME), 2025. szeptember 8., 17:00

— Domokos
Péter (HUN-REN Wigner FK), 2025. szeptem-
ber 8., 18:00

— Frohlich Georgina (SE), 2025. szeptember 10.,
17.00

— Csandd Maté (ELTE),
2025. szeptember 10., 18:00

— Fiilop Zsolt (HUN-REN ATOMKTI) , 2025. szep-
tember 15., 17.00

— Pdsztor Gabriella (ELTE),
2025. szeptember 15., 18.00

Csonka Szabolcs (BME), 2025. szeptember 17.,
17:00

— Asboth
Janos (BME) , 2025. szeptember 17., 18.00

— Zardnd Gergely (BME), 2025. szeptember 29.,
17.00

David Gyula (ELTE), 2025. szeptember 29., 18.00
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MEGISMERNI A VILAGOT

AZ ELEMI RESZECSKEKTOL
A CSILLAGOKIG

Részecske- Szilardtestfizikai
és Madfizikai Intézet és Optikai Intézet

Kisérleti és elméleti részecskefizika * Kisérleti és elméleti szilardtestfizika
Asztro-részecskefizika * Kvantumoptika és kvantuminformatika

Gravitacio és altalanos relativitaselmélet » Lézerspektroszkopia és fotonika, ultragyors folyamatok
Plazma- és (irfizika kutatasa

Magfizika * Folyadékszerkezet, gazkistilések, elektrolitikus
Magfizikai jellegii modszereket alkalmazo nanoszerkezetek

anyagtudomany » Statisztikus fizika

Komputécios tudomanyok és elméleti idegtudomény * Anyagtudomany és nanotechnolégia

,Ha a tudomdny majd oly nagyra né, hogy az emberi elme nem lesz képes azt
egészében felfogni, s az emberi élet tul révid lesz, semhogy idejében eljuthassunk
azelsé vonalakba, hogy ott a tudomdny gyarapitdsdn fdradozzunk, nem képezhetne-e
tobb ember kutatécsoportot, s nem végezhetné-e el egyiittesen azt, amit egyetlen
személy nem képes elvégezni? ...

... Az egylittmlikédésekben folytatott kutatds lehetéségeit az eddigieknél sokkal
behatébban kellene tanulmdnyozni, mivel mindeddig ezek képezik az egyetlen ldthatd
reménységet a tudomdny megujhoddsdra, amikor az majd madr tul nagyra ndvekedett
egyetlen személy szamdra.”

Wigner Jené (1902-1995), Nobel-dijas fizikus
A tudomdny hatdrai, 1950
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