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Kvantumfizika 100 – Szerkesztői előszó

A 2025-ös évet az ENSZ „A Kvantum Nemzetközi Évé-
nek” nyilvánította, megünneplendő a kvantummechani-
ka születésének 100. évfordulóját, és felhívva a figyelmet 
a kvantumfizika és kvantumtechnológia érdekességére, 
hasznosságára. Ebből az ünneplésből a Fizikai Szemle is 
kiveszi a részét: a nyári duplaszámot a kvantumfizikának 
szenteltük. Nyugaton és itthon kutató fizikuskollégákat 
kerestünk meg, hogy számoljanak be arról, hogyan hasz-
nálják a kvantumfizikát, illetve hogyan fejlesztik tovább. 
A kvantumfizika legendásan furcsa, különös fogalmait 
(szuperpozíció, összefonódás) mennyire értjük ma? Mi-
lyen technológiát lehet ezekre építeni?

Mi is történt 1925-ben, miért tesszük ekkorra „a 
kvantummechanika születését”? A jelen szám első cikke 
ezen születés előtt tiszteleg. 1925 előtt már többen pró-
bálták kvantumokra, diszkrét adagokra bontani a folyto-
nosnak tűnő természetet, sőt, ezért Nobel-díjat is kapott 
már Max Planck (1918), Albert Einstein (1921), és Niels 
Bohr (1922). Azonban ahhoz, hogy ezekből a próbálko-
zásokból koherens elmélet álljon össze – az „új kvantum-
mechanika” – teljesen új fogalmak, új egyenletek kellet-
tek. Ezeket gyors egymásutánban 1925-ben dolgozta ki 
Werner Heisenberg, Max Born, Pascual Jordan, Erwin 
Schrödinger – és persze sokan mások. Ahogy egy új el-
méletnél sokszor előfordul, az eredeti cikkek (magyarul 
a „Kvantummechnika” c. 1971-es könyvben1) sokszor 
nehezen olvashatóak. A jelen folyóiratszám első cikké-
ben László István (BME) segít megérteni a cikkeket és 
kontextusukat.

Hogyan lehet összeegyeztetni a fura kvantumos fo-
galmakat a jól megszokott hétköznapi fogalmainkkal? 
Cikkeink egy csoportja ezzel az ún. kvantum-klasszikus 
átmenettel foglalkozik. Szabó Gábor filozófus azt mu
tatja meg, hogyan lehet az oksági viszonyt kvantumosan 
általánosítani, és ez hogyan segít értelmezni a kvantumos 
összefonódást. Polónyi János a renormalizációs csoport 
fénytörésében vizsgálja, hogyan tud kiemelkedni egy 
klasszikus makrovilág egy kvantumos mikrovilágból.

Mi a kapcsolata a világegyetem nagy léptékű szerke-
zetét leíró relativitáselméletnek és a mikrovilágot jól le-
író kvantumfizikának? Diósi Lajos azt a lehetőséget vizs-
gálja meg, hogy a Schrödinger-egyenletet újabb tagokkal 
kiegészítve közelítsük az elméleteket, amivel el lehet 
kerülni a hullámfüggvény „beugrását” (redukcióját) is. 
Németh Dániel a másik irányból közelít: abba ad bete-
kintést, hogyan lehet a kvantumos Monte Carlo-mód-
szereket használni a téridő kvantumstatisztikai leírására 
az úgynevezett kauzális dinamikus háromszögeléssel. 
Dávid Gyula és Cserti József a relativisztikus kvantum-
mechanika egy 1930-ban Schrödinger által felismert kö-
vetkezményéről ír: a részecskék „reszkető mozgásáról”, 
a  Zitterbewegungról és arról, ez hogyan jelenik meg 
napjaink egyik sztáranyagában, a grafénban.

Hogyan segít a kvantumtechnológia véletlen számok 
előállításához, és miért fontos ez? Schranz Ágoston és 
szerzőtársai az optikai elven működő kvantumos vélet-
lenszám-generátorokat tekintik át, és beszámolnak arról 
a rendszerről, amelyet a BME-n fejlesztenek. Kriváchy 
Tamás a kvantumos összefonódást használó új elméleti 
ötletekről számol be, amelyekkel sokszereplős hálózatok 
tagjai tudnak egymással biztonságos módon véletlen kul-
csokat megosztani.

Hogyan alkalmazhatunk gépi tanulást és más ma-
tematikai trükköket a kölcsönható részecskék hírhedt, 
exponenciálisan bonyolult hullámfüggvényeivel való 
számoláshoz? Werner Miklós és Kapás Kornél az úgy
nevezett mátrixszorzat-állapotokkal való közelítést 
mutatja be, amivel rugalmasan lehet az adott fizikai 
modellhez legjobban illeszkedő pályákat kiválasztani, 
és ami betekintést ad a modellben megjelenő összefo-
nódás szerkezetébe. Szabó Attila a gépi tanulásos mód-
szereket tekinti át, amelyekkel a hullámfüggvény fontos 
adatait egy számítógépen megvalósított neurális háló 
tömöríti be – ezt ábrázolja címlapunk is.

Miért akarunk ma kvantumszámítógépet építeni, és 
hogyan? A „kvantumtechnológia” szóról sokaknak ugra-
nak be ezek a kérdések, amelyekkel nemcsak akadémiai 
kutatóintézetek, hanem nagy techcégek és startupok is 
foglalkoznak ma világszerte, és ami dollármilliárdokat 
mozgat meg a tőzsdéken is. Számunkban öt cikk foglal-
kozik ezzel a témával.

Hogyan működnek a szupravezető nanoáramkörök-
kel megvalósított kvantumszámítógépek, hogyan építik 
ezeket? Gyenis András azt ismerteti, hogyan kell a kvan-
tummechanikát ilyen szupravezető nanoáramkörök 
leírására használni, és hogyan vezet ez a kvantumbitek 
transzmonos és fluxóniumos megvalósításához. A mik-
roszkopikus alkotóelemek kvantumos leírása az ilyen 
milliméteres eszközök esertében reménytelen, úgyhogy 

 1 � Jánossy Lajos (szerk.), Györgyi Géza (ford.): Kvantummechanika. 
Cikkgyűjtemény. Akadémiai Kiadó, Budapest, 1971.
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más útra van szükség: az áramkör klasszikus egyenle-
teinek kvantálására. Kürtössy Olivér és szerzőtársai azt 
írják le, hogyan valósítják meg, és milyen mérésekkel 
vizsgálják ezeket az áramköröket a BME-n, illetve, 
hogy milyen újfajta, topologikus kvantumbitekkel kí-
sérleteznek ott.

Milyen programokat érdemes futtatni a kvantum-
számítógépeken? Rakyta Péter azt írja le, hogyan lehet 
gyorsítani az általa fejlesztett szoftverrel (SQUANDER) 
az egyik ilyen programtípust, az úgynevezett variációs 
kvantumáramköröket – amelyek kvantumkémiai és 
egyéb alkalmazásokkal kecsegtetnek. Pozsgay Balázs 
arról számol be, hogy már a mai meglehetősen zajos 
kvantumszámítógép-prototípusokkal is lehet új felfede-
zéseket tenni az integrálható kvantummodellek szimu

lálása révén. Rakovszky Tibor azt mutatja meg, milyen új 
kérdések és új összefüggések tárulnak fel, ha a statiszti-
kus fizika eszközeivel vizsgáljuk a teljesen véletlenszerű 
kvantumszámítógépes programokat (véletlen kvantu-
máramköröket).

Amint az a fenti összegzésből is látható, a Fizikai 
Szemle még egy ilyen dupla számmal is csak  betekintést 
tud adni néhány új kvantumos kutatási irányba, ered-
ménybe. Az érdeklődőknek figyelmébe ajánljuk még a 
„Kvantumok világa” ismeretterjesztő előadássorozatot, 
amely idén szeptemberben az MTA-n lesz – erről is ol-
vashatnak még számunkban. További kvantumos cikkek 
vannak még előkészület alatt – remélhetőleg még az idei 
évfordulós évben találkozhatnak majd ezekkel a Fizikai 
Szemle olvasói.

A KVANTUMMECHANIKA ÚTTÖRŐI
SZÁZÉVES A KVANTUMOK VILÁGA, 2025

Albert Einstein Niels Bohr Arnold Sommerfeld

Max Born

Erwin Schrödinger

Werner Heisenberg Pascual Jordan Hans A. Kramers

Louis de Broglie Wolfgang Pauli Paul A. M. Dirac

Max Planck
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Werner Heisenberg és a mátrixmechanika
László István 

Budapesti Műszaki és Gazdaságtudományi Egyetem, Elméleti Fizika Tanszék, Budapest 
E-mail: laszlo@eik.bme.hu

Amikor az egyetemen a kvantummechanikát tanuljuk, 
először a Schrödinger-egyenlettel és rajta keresztül a 
hullámmechanikával ismerkedünk meg. A mátrixmecha
nika vázlatos ismertetésére szinte a bevezető kurzus vége 
felé kerül sor az operátorok mátrixelemeinek ismerteté-
sével a Hilbert-téren, amikor már megoldottuk az összes 
alapvető kvantummechanikai problémát. Ekkor adódik 
a kérdés, hogy Heisenberg hogyan tudta kitalálni a mát-
rixmechanikát anélkül, hogy ismerte volna az operátorok 
és a Hilbert-tér szerepét a kvantumos jelenségek leírásá-
ra. Nem beszélve arról, hogy hogyan kerültek elő neki a 
mátrixok, amikor nem ismerte azok fogalmát sem. A kö-
vetkezőkben ezekre a kérdésekre próbálunk választ adni.

A „régi kvantummechanika”
A kvantummechanika felfedezéséhez vezető út röviden 
a következő [1]. Max Planck a feketetest hőmérsékleti 
sugárzását annak feltételezésével tudta megmagyarázni 
1900-ban, hogy az üregbe zárt ν frekvenciájú sugárzás 
energiája csak a hν mennyiség egész számú többszörö-
se lehet, vagyis nem folytonos, hanem kvantált. Itt h a 
Planck-állandó. Így jött ki a kísérleti eredmény, és Planck 
reménykedett, hogy valamikor megtalálja a helyes ma-
gyarázatot. Ezt a gondolatot Albert Einstein 1905-ben 
alkalmazta a szabadon terjedő elektromágneses hullá-
mokra, és a fényelektromos jelenséget úgy értelmezte, 
hogy a ν frekvenciájú fény hν energiát ad át a fémbe zárt 
elektronnak. A hν energiacsomag neve lett később a fo-
ton. Ezzel Einstein a fényt részecsketulajdonsággal ru-
házta fel, és ezért kapta Nobel-díját 1921-ben.

Niels Bohr 1922-ben kapott Nobel-díjat 1913-ban 
közölt munkájáért, amelyben úgy írta le a hidrogén
atom elektromágneses sugárzását, hogy posztulálta, ha 
az elektron impulzusmomentuma a ' = (h/2π) mennyi-
ség egész számú többszöröse, akkor az atom, szemben 
a klasszikus elmélettel, nem sugároz. Ezeket a pályákat 
nevezte stacionárius pályáknak, és sugárzás kibocsátása 
vagy elnyelése akkor történik, amikor az elektron átke-

rül egyik stacionárius pályáról a másikra. A kisugárzott 
vagy elnyelt sugárzás ν frekvenciájára pedig igaz, hogy  
hν megegyezik a két pálya energiájának a különbségével.

Amikor Louis de Broglie 1923-ban a hullám-részecs-
ke kettős természetet kiterjesztette az addigi részecskék-
re is, létrejött a régi kvantummechanika.

A régi kvantummechanikához tartoztak a Bohr-mo-
dellből kiolvasott, úgynevezett Kramers-szabályok. Ezek 
azt mondják meg, hogy hogyan kell megváltoztatni a 
klasszikus fizikai formulákat, hogy a kísérleti eredmé-
nyeket le tudják írni. A Bohr–Kramers–Slater-elmélet 
[2] alapján feltételezték továbbá, hogy bár az atomok 
stacionárius állapotban nem sugároznak, de stacionárius 
állapotok közötti átmenetek során és „virtuális rezgése-
ket végezve” sugárzást bocsátanak ki, illetve nyelnek el.

A régi kvantummechanikának sikerült néhány atomi 
tulajdonságot megmagyarázni, de nem adott számot pél-
dául a molekulák és a szilárdtestek elektromos vezetési 
tulajdonságairól, ráadásul tele volt ad hoc lépésnek tűnő 
mesterséges gondolattal, fogalommal.

Az „új kvantummechanika” születése: 
Heisenberg
A napjainkban is ismert új kvantummechanikának a meg
születését Werner Heisenberg (1901–1976) 1925-ben kö-
zölt mátrixmechanikájától és Erwin Schrödinger (1887–
1961) 1926-ban közölt hullámmechanikájától számítjuk. 
Megjelenésük után hamarosan bebizonyították, hogy a 
két kvantummechanika ugyanaz, csak más matematikai 
formában vannak megfogalmazva.

Werner Heisenberg Würzburgban született, és édes-
apja 1909-től a müncheni egyetemen bizantinológus-
ként a közép- és újgörög nyelv tanára volt. Így fia már 
gimnazistakorában görögül olvasta Platónt. Heisenberg 
Sommerfeldnél doktorált 1923-ban. A doktori vizsga 
nem sikerült valami fényesre [3], mert az 1911-ben No-
bel-díjjal jutalmazott Wien a kísérleti részre a lehető 
leggyengébb, de még nem a bukást jelentő jegyet adta, 
viszont Sommerfeld az elméleti rész kidolgozása miatt a 
lehető legjobbat. A disszertáció témája igen nehéz volt: 
„Folyadékok áramlásának stabilitása és turbulenciája”. 
Heisenberg apja megkérte James Franckot, az 1925. év 
Nobel-díjasát, hogy tanítsa meg fiának a kísérleti fizikát. 
Néhány laboratóriumi látogatás után Franck kijelentette, 
hogy szerinte az lesz a legjobb, ha patronáltja elméleti fi-
zikus lesz.

Heisenberg attól tartott, hogy gyenge vizsgája mi-
att Max Born nem fogja őt asszisztensként alkalmazni, 
mint Pauli utódja. Born látva Wien trükkös kérdéseit, 

 

László István fizikus, címzetes egyetemi tanár 
a BME Fizikai Intézet Elméleti Fizika Tanszé-
ken, az MTA doktora. Kutatási területe a mo-
lekulafizika, fullerének, nanocsövek, kémiai 
gráfelmélet és szoros kötésű molekuladinamikai 
számítások.
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felfogadta őt, és később így emlékezett róla: „Úgy nézett 
ki, mint egy parasztfiú, rövid nadrágban, szőke hajjal, 
fényes tekintettel és elragadó megjelenéssel. Feladatait 
komolyabban vette, mint Pauli, és nagy segítség volt 
nekem. Hihetetlen gyorsasága és pontossága lehetővé 
tette számára, hogy hatalmas munkát tudott elvégezni 
különösebb erőfeszítés nélkül” [4]. Born első feladatként 
az anomális Zeeman-effektus problémáját adta Heisen-
bergnek, amit ő sikeresen megoldott. Kortársai furcsá-
nak tartották, hogy ½ értékű kvantumszámot vezetett 
be. Itt, Göttingenben habilitált 1924-ben, és több alka-
lommal dolgozott 1924–26-ban Niels Bohr asszisztense-
ként a koppenhágai egyetemen.

Heisenberg első cikke a mátrix
mechanikáról
Heisenbergnek a mátrixmechanikáról szóló első cikke 
1925-ben jelent meg, melynek címe Kinematikai és me-
chanikai összefüggések kvantumelméleti átértelmezésé-
ről [5, 6]. Erről a közleményről a következőt írta Steven 
Weinberg, aki 1979-ben kapott Nobel-díjat az elektro-
mágnességet és a gyenge kölcsönhatást egyesítő elektro
gyenge kölcsönhatás elméletének a kidolgozásáért: „Ha 
az ember misztikusnak találja, amit Heisenberg tett, 
nincs egyedül. Én már több alkalommal megpróbáltam 
elolvasni azt a cikket, amit Heisenberg írt visszatérve 
Helgolandról, és bár úgy gondolom, hogy értem a kvan-
tummechanikát, sohasem értettem meg motivációit, 
melyek a cikkében található matematikai lépéseket in
dokolták. Az elméleti fizikusok legsikeresebb munkáik
ban a következő szerepek egyikét játszák: ők vagy böl-
csek vagy mágusok… Általában könnyű megérteni a 
bölcs fizikusokat, de a mágus fizikusok cikkei gyakran 
érthetetlenek. Ilyen értelemben Heisenberg 1925-ös 
cikke tiszta mágia” [7]. Jammer megállapítja [8], hogy az 
átmenet a régi kvantummechanikából az újba rendkívül 
gyors volt, és nem egyetlen gondolatfolyamat volt, nem 
is „felfelé haladó lépcső”, hanem „összefüggő sikátorok 
szövevénye”.

MacKinnon feltételezte [9], hogy Heisenberg 1925 
júniusában és júliusában, amikor híres cikkéhez készítet-
te a számításokat, valójában a virtuálisoszcillátor-modellt 
próbálta alkalmazni a hidrogénatomra. Feltételezését 
Heisenberg Kronighoz 1925. június 5-én írt levelével 
indokolja. Ebben a levélben van egy ábra [9, 10], amely 
szerint a K Coulomb-erőt számolta ki egy P pontban, 
melytől a távolságra merőlegesen rezgett egy dipólusosz-
cillátor. Heisenberg itt megmutatta, hogy az oszcillátor 
x(t) kitérésének Fourier-együtthatóival ki lehet fejezni 
a K erő Fourier-sorát az oszcillátor kitérésének függvé-
nyében. Ez egy tipikus gondolat a virtuális rezgéseket 
tartalmazó Bohr–Kramers–Slater-elmélet szellemében. 
MacKinnon szerint Heisenbergnek nem sikerült a hid-
rogénatom sprektumát megmagyarázni. Ekkor egysze-
rűsítette a feladatot, és csak a rezgésekkel foglalkozott. 
Miután elvégezte a számításokat, akkor vette észre, hogy 

egy általános módszert talált az új kvantummechaniká-
ra. Valószínű, ez a feltételezés nem lehet távol a valóság-
tól, mert MacKinnon cikke végén köszönetet mondott 
Heisenbergnek, hogy elolvasta annak egyik változatát. 
Ha nem értett volna egyet az abban foglaltakkal, bizo-
nyára tiltakozott volna. Maga Heisenberg is írja Pauli 
tiszteletére írt emlékcikkében [11], hogy „Először 1925 
tavaszán próbáltam meg a hidrogén spektrumának in-
tenzitási képletéhez eljutni a Kepler-pálya Fourier-sorá-
nak tanulmányozásával, hogy könnyebben kitalálhassam 
a helyes kvantumelméleti intenzitásképleteket. A Kep-
ler-probléma túl nehéznek bizonyult ehhez, de felme-
rült az ötlet, hogy az átmeneti elemek összessége éppúgy 
reprezentálja az elektron koordinátáit, mint a klasszikus 
fizikában a Fourier-sor”.

Heisenberg cikkének elején kijelenti, hogy „a for-
mális szabályokkal szemben, melyeket általában a 
kvantumelméletben megfigyelhető mennyiségek (pl. a 
hidrogénatom energiája) kiszámítására használnak, az 
a súlyos kifogás emelhető, hogy e számítási szabályok 
lényeges alkotóelemként olyan mennyiségek között 
fennálló összefüggéseket tartalmaznak, amelyek – úgy 
látszik – elvileg megfigyelhetetlenek (mint pl. az elekt-
ron helye, keringési ideje)” [5, 6].

A megfigyelhető mennyiségek közti alapösszefüg-
gésként Heisenberg a Bohr-féle frekvenciafeltételre épít. 
Ennek értelmében amikor az elektron egy n-edik sta
cionárius pályáról (energiája W(n)) egy (n – α)-adik sta-
cioniárius pályára (energiája W(n – α)) megy át (ahol n 
és n – α egész szám), akkor sugárzást bocsát ki, aminek  
ν(n, n – α) frekvenciáját, azaz ω(n, n – α) körfrekvenciáját 
így adjuk meg:
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Itt és a továbbiakban is Heisenberg jelöléseit alkalmaz-
zuk, kivéve a gót betűket, melyeket a megfelelő latin be-
tűkkel helyettesítünk.

A Bohr-féle frekvenciafeltétel akkora szakítást jelent 
a klasszikus mechanikával, hogy a klasszikus mechanika 
érvényessége megszűnik a legegyszerűbb kvantumelmé-
leti problémák (atomi tulajdonságok) tárgyalása esetén 
is. A klasszikus mechanikával való kapcsolatra mégis 
szükség van, e tekintetben Heisenberg Born cikkére [12] 
hivatkozik, ahol a szerző csak úgy tudja a korresponden-
ciaelvvel megkapni a helyes kvantummechanikai kife-
jezéseket, ha a nagy kvantumszámok esetén szükséges 
deriválásokat kis kvantumszám estén differenciahánya-
dossal helyettesíti [8, 12]. Vagyis
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ahol Φ valamely kvantumszámtól függő mennyiség.
Heisenberg az atom sugárzásának leírását célozta az 

új kvantumelméleti mechanika megalkotásával, a Kra
mers-féle diszperziós elméletre alapozva.  Kramers [13] 
a Bohr–Kramers–Slater-elmélet [2] alapján az atomok  
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polarizációjára kapott egy kifejezést, miközben az atom-
ról feltételezte, hogy különböző frekvenciájú oszcillá-
torokból épül fel. A klasszikus fizika törvényei alapján 
kiszámolta a polarizációt, majd az oszcillátorok frekven-
ciáit az (1) Bohr-féle frekvenciafeltétellel helyettesítette, 
ügyelve a korrespondenciaelvre, azaz arra, hogy nagy 
kvantumszámok esetén megkapja a klasszikus formulá-
kat.

Heisenberg a továbbiakban megadja, hogy a klasszi-
kus fizikában hogyan néz ki a mozgó elektron sugárzása 
a hullámzónában. Vagyis 

		 ( )3 2

e
r c

= × × E r r v 	 (3)
és
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az elektromos és a mágneses térerősség első rendben. 
Ezekhez a következő közelítésben további tagok járul-
nak, például

	 3 ,
e

vv
rc
 	 (5)

illetve magasabb rendben

	 (6)

alakú tagok. Az elektron töltése e, v a sebessége és r a tá-
volsága a kiszemelt ponttól, ahol a sugárzást megadjuk.

Ezután következik néhány mondat, amelyek problé-
mát okozhatnak első olvasásra. „A klasszikus elméletben 
az (5)–(6) magasabb rendű közelítések egyszerűen ki-
számíthatók, ha az elektron mozgása, illetve annak Fou-
rier-előállítása adott, így tehát valami hasonlót várunk 
a kvantumelméletben is. [...] A kérdés a legegyszerűbb 
alakban így fogalmazható meg: Legyen adott az x(t) 
klasszikus mennyiség helyére lépő kvantummechani-
kai mennyiség! Mely kvantummechanikai mennyiség 
foglalja el ekkor x(t)2 helyét?” Itt Heisenberg sejteti gon-
dolatmenetének indokait, miközben néhány mondattal 
korábban azt tanácsolta, hogy fel kell adni reményünket 
az eddig meg nem figyelt mennyiségek – mint az elektron 
helye – megfigyelésére, és csak megfigyelhető mennyi-
ségek között fennálló összefüggésekkel foglalkozzunk. 
Most mégis az x(t) és x(t)2 klasszikus mennyiség helyére 
lépő kvantummechanikai mennyiségeket keresi?

Heisenbergnek, miközben Kramers-szel elkészítette 
közös cikküket [14], támadhatott az a gondolata, hogy ha 
a klasszikus E elektromos tér Fourier-sora

		 ( ) ( ) ( )e ,i n tE n,t E n ω α
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akkor ennek kvantummechanikai alakja a Kramers-el-
mélet [11] szerint
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α
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Az |E(n, n – α)|2 pozitív α esetén a sugárzás kibocsá
tásának, negatív α esetén pedig sugárzás elnyelésének 
az intenzitása. Heisenberg nem írja fel a (8) egyenletet, 
mert szerinte ennek nincs értelme, de végig úgy számolt, 

mintha felírta volna minden n-re. Helyette azt mondja, 
hogy az

		 ( )e( ) i n,n tE n,n ω αα −− 	 (9)

mennyiségek sokasága fejezze ki az elektromos tér kvan-
tummechanikai alakját. Most persze egy kicsit előre
szaladtunk. Kollégáihoz írt levelei alapján valószínű, 
hogy Heisenberg ekkor még nem látta ilyen világosan 
a kvantumos mennyiségek előállításának szabályát, de 
cikkét könnyebben megértjük, ha a fentieket előrebo-
csátjuk.

Tehát Heisenberg, amikor azt mondja, hogy az új 
kvantummechanikában nem foglalkozunk olyan men�-
nyiségekkel, melyeket nem figyelhetünk meg, ezen azt 
érti, hogy ezeket valami kvantummechanikai mennyi-
ségekkel kell helyettesíteni, és amivel felhagyunk, ezek 
klasszikus értelmezése. Ezt abból látjuk, ahogyan felépíti 
kvantummechanikáját. Először veszi az adott men�-
nyiség klasszikus alakját, azt Fourier-sorba fejti, majd a 
Kramers-szabályok és az (1) Bohr-féle frekvenciafeltétel 
alapján elkészíti a megfelelő kvantummechanikai men�-
nyiséget.

Ha tehát csak egydimenziós rendszerekkel foglalko-
zunk, akkor

		 ( )( ) ( )ei n tx n,t a n ω α
αα
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fejezi ki a mozgást klasszikus értelemben. A (10) Fourier-
sorhoz a kvantummechanikában rendeljük hozzá az

		 ( )( )ei n,n ta n,n ω αα −− 	 (11)

mennyiségek sokaságát. Heisenberg itt megjegyzi, hogy 
a  (8) egyenletnek megfelelő alak azért nem értelmes, 
mert az n és az n – α mennyiségek egyenrangúak (11)-
ben. Vagyis a (10)-ben n rögzített, és n – α változik, szem-
ben a (11)-gyel, ahol mindkét index változik. Ennek elle-
nére a (11) matematikai tulajdonságait a (10) matematikai 
tulajdonságaiból olvassa le, és amikor x(t)-ről beszél, 
akkor gondolatban felírja (10)-et minden n-re. Ez is arra 
utal, hogy Heisenberg eredetileg a Bohr–Kramers–Sla-
ter-elmélet alapján az n-edik nívó körüli virtuális rezgé-
seket írta fel. Így, ha az x(t)2 Fourier-sorára igaz, hogy
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és ha β = α + γ, akkor
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és így
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A (12)–(14) egyenletekből Heisenberg „mágus” azt 
olvasta ki, hogy az x(t)2 kvantummechanikai mennyi-
ségét a következő módon kaphatjuk meg x(t) kvantum
mechanikai mennyiségéből:
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Itt Heisenberg feltételezte, hogy igaz az

		 ( )  (  ) ( )n,n n, n n ,nω β ω α ω α β− = − + − − 	 (16)

Bohr-féle frekvenciafeltétel. Ezzel elérte, hogy a kvan-
tummechanikai mennyiségekre ugyanazok az algebrai 
összefüggések érvényesek, mint a klasszikus mennyi-
ségekre. Rájött arra is, hogy a (15) egyenlettel definiált 
szorzás nem kommutatív.

A (11) és (15) kvantummechanikai mennyiségek de
finiálása után látszik, hogy x(t) (11) kvantummechanikai 
mennyiségének ismeretében annak idő szerinti deriválá-
sával megkapjuk a v = ẋ(t) klasszikus sebesség

		 ( ) ( ) ( )ei n,n ti n,n a n,n ω αω α α −− − 	 (17)

kvantumos alakját, és az (5)–(6) mennyiségek kvantu-
mos alakjának hozzáadásával az elektromos tér kvantu-
mos alakja megmarad a (9) egyenlettel felírt alakban.

Dinamika
Heisenberg az
		 ẍ  + f (x) = 0	 (18)
mozgásegyenlet kvantummechanikai megoldásával fog-
lalkozik, és feltételezi, hogy a mozgás periodikus. Bohr 
után feltételezi továbbá, hogy a mozgásra igaz a

		  d dp q mx x J nh= = =∫ ∫ 

 

	 (19)

kvantumfeltétel. Az egyedüli változtatás Bohr erede-
ti gondolatmenetéhez képest, hogy az x(t) és a v = ẋ(t) 
klasszikus mennyiségek helyett a (11) és (17) kvantum-
mechanikai mennyiségeket alkalmazza a Kramers-sza-
bályok figyelembevételével.

Foglalkozzunk először a kvantumfeltétellel! Feltéte-
lezve a periodikus mozgást, klasszikusan írhatjuk:
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Ezt az alakot behelyettesítve (19)-be adódik, hogy

		
2 2 d 2 ( ) ( )mx x m a n n nh.α

α
α ω

∞

=−∞
= π =∑∫ 



	 (21)

Heisenberg szerint (21) jobb oldala az n-től való függés 
miatt nem felel meg a korrespondenciaelvnek, ezért en-
nek n szerinti deriváltját veszi, vagyis

		 ( )2d
( ) (

d
)2 m a n n h.

n αα
α αω∞

=−∞
π =∑ 	 (22)

Áttérve a kinematikai részben definiált kvantummecha-
nikai változókra (22)-ből kapjuk, hogy

	      ( )2d
2

d
( ) ( )m a n,n n,n h.

n αα
α α ω α∞

=−∞
π − − =∑ 	 (23)

A bal oldal deriváltját (2) szerint átalakítva kapjuk a 
Bohr-féle kvantumfeltétel alakjára, hogy

		

2

0

2

4 ( ) ( )

( ) ( )

m a n ,n n ,n

a n,n n,n h.

α
α ω α

α ω α

∞

=
π + +

− − − =

∑
	 (24)

Ezután Heisenberg legegyszerűbb példaként az an-
harmonikus oszcillátor kvantummechanikai problémá-
jával foglalkozik. Itt a klasszikus (18) egyenlet alakja

		 2 3
0 0x x x .ω λ+ + = 	 (25)

Ennek elkészíti a kvantummechanikai alakját a (11) 
kvantummechanikai alaknak és idő szerinti második 
deriváltjának behelyettesítésével. A kapott egyenlet és 
a  (24) Bohr-féle kvantumfeltétel segítségével λ szerint 
perturbációszámítást alkalmazva kapja az a(n, n – τ) át-
meneti együtthatókat.

Az irodalomban többen próbálták rekonstruálni 
Heisenberg gondolatmenetét, például Tomonaga [15], 
Mehra és Rechenberg [16], valamint Aitchison, Mac-
Manus és Snyder [17]. Ezen utóbbi szerzők véleménye 
szerint azért nehéz Heisenberg eredeti cikkét megérte-
ni, mert nem ismerjük azokat a számításokat, melyeket 
elvégzett, ezért közlik a szerintük fontos számításokat. 
Az átmeneti együtthatók ismeretében Heisenberg ki
számítja az
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teljes energiát a (11) kvantummechanikai mennyiségek 
felhasználásával, és azt kapja, hogy a λ2 nagyságrendű 
tagokig az energia diagonális elemeinek értéke
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majd megjegyzi, hogy néhány nem diagonális energia-
elemre nulla értéket kapott, de nem tudja bebizonyítani, 
hogy minden nem diagonális elem nulla. A λ = 0 értékre 
megkapjuk a harmonikus oszcillátor kvantummechani-
kai energiáját a nullponti energiával együtt.

Fontos megjegyezni, hogy akkor még nem lehetett 
tudni, hogy mi a kvantummechanikai helyes energia. 
Heisenberg onnan gondolta, hogy jó nyomon jár, hogy a 
kapott (27) kifejezés megegyezett a Kramers–Born-féle 
módszerrel kapott értékkel [12].

Heisenberg első cikkének közvetlen hatása

Born és Jordan cikke

Amint a kézirat elkészült, 1925. július 11-én vagy 12-én, 
Heisenberg odaadta azt Bornnak, hogy mondjon róla 
véleményt, alkalmas-e publikálásra [4]. Közben megje-
gyezte, hogy keményen dolgozott rajta, de néhány alap-
vető megfontolásnál tovább nem jutott. Born megígérte, 
hogy megnézi, mit tud tenni, de mivel fáradt volt, csak 
néhány nap múlva kezdett vele foglalkozni. Későbbi 
visszaemlékezésében így foglalja össze Heisenberg kéz-
iratának tartalmát:
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„Amikor néhány nap múlva elkezdtem olvasni, el-
bűvölőnek tartottam. Heisenberg bevezette az átmeneti 
amplitúdó fogalmát, és kifejlesztett egy rájuk vonatkozó 
számítási módszert analógiában a klasszikus rezgő rend-
szerekkel és azok harmonikus komponenseivel (Fourier-
sorok). […] Ezután javasolta, hogy felejtsünk el mindent a 
sorokról, és csak az átmeneti amplitúdókat tekintsük, és 
a rájuk talált szorzási szabályt. […] A legmerészebb lépése 
az volt, hogy átmeneti amplitúdót rendelt a q koordiná-
tához és a p impulzushoz is. Mély benyomást keltettek 
bennem Heisenberg megfontolásai, melyek nagy lépést 
jelentettek abban a tudományos programban, amin dol-
goztunk.” [3]

Abban az időben írta Einsteinnek: „Heisenberg ha-
marosan megjelenő munkája nagyon misztikusnak tű-
nik, de biztos, helyes és mély…” [3].

Miután Born elküldte Heisenberg kéziratát publiká-
lásra, elkezdett annak tartalmán gondolkodni. Az egyik 
reggel rájött, hogy itt valójában a mátrix fogalma lett 
bevezetve a kvantummechanikai mennyiségek leírásá-
ra. Először Paulit kérte meg, hogy dolgozzanak együtt 
a felmerült problémák megoldásán. Pauli érdekesnek és 
fontosnak tartotta Heisenberg eredményeit, de nem an�-
nyira, hogy együttműködjön Bornnal a kérdés szerinte 
felesleges elmatematizálásában [3]. Érdekes, hogy akkor 
még mennyire szokatlan volt a mátrixok alkalmazása a 
fizikában. Végül Born Jordannal együttműködve dol-
gozott a cikken, átírták, kiegészítették és pontosították 
Heisenberg eredményeit [18].

A (11) jelölést

		 a(n, m) eiω(n, m)t	 (28)

alakban írták. Így a helykoordinátát és az impulzust a 
kvantummechanikában leíró q és p mátrixok mátrix
elemei a következők

		 qn m = q(n, m)eiω(n, m)t	 (29)
és
		 pn m = p(n, m)eiω(n, m)t	 (30)

Megmutatták továbbá, hogy a (24) Bohr-féle kvan-
tumfeltétel ekvivalens a

		 pq – qp = ('/2π) I 	 (31)

felcserélési relációval, ahol I az egységmátrix. Ez egyúttal 
azt is mutatja, hogy a Bohr-modellben alkalmazott kvan-
tumfeltétel milyen mély feltételezés volt.

Dirac cikke

Kapica, egy szovjet fizikus, amikor Rutherford labora
tóriumában tartózkodott Cambridge-ben, szervezett egy 
szemináriumsorozatot, ahol kötetlenül mindenki hoz
zászólhatott és kérdezhetett. Ez volt a Kapica-klub [19]. 
Itt tartott Heisenberg előadást 1925 júliusában. Előa-
dásának címe „Termzoológia és Zeemanbotanika” volt. 
Bár ennek témája a Zeeman-effektus, röviden beszélt 
legújabb, kvantummechanikai eredményeiről is. Dirac 

nem vett részt az előadáson, de eljutott hozzá Heisenberg 
cikkének egy kézirata. Először nem tűnt neki érdekes-
nek, azonban kb. két hét múlva rájött, hogy a kvantum-
mechanika szempontjából fontos dolgokat tartalmaz [3]. 
Miután megértette Heisenberg gondolatmenetét, ő is 
bevezette a mátrixjelöléseket – anélkül, hogy megemlí-
tette volna ezt a fogalmat. A kvantummechanikai men�-
nyiségek szorzását Heisenberg-szorzásnak nevezte, és 
sok dologra rájött, amit Born és Jordan is felfedezett [18]. 
Új eredménye [20], hogy a Born-féle kvantumfeltétel ál-
talános alakja
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,

2 2 r
r r r r
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ahol A és B az A és B klasszikus fizikai mennyiségek 
kvantumos alakja és {A, B} a Poisson-féle zárójeles ki-
fejezés. Tehát
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Ezeket most Heisenberg-féle felcserélési relációknak 
hívjuk.

A háromemberes cikk

Born, Heisenberg és Jordan általánosította Heisenberg 
f  =  1 szabadsági fokra vonatkozó alapfeltevéseit tetsző-
legesen sok, f  >  1 szabadsági fokú rendszerekre [21]. 
Kidolgozták a perturbációelméletet kvantummechani-
kai rendszerekre. Ők is belátták a (33) összefüggéseket. 
Kanonikus transzformációkat vezettek be, melyekre to-
vábbra is fennállnak a (33) összefüggések. Megmutatták, 
hogy ha ez a transzformáció diagonális alakra hozza az 
energia kvantummechanikai alakját, akkor a diagoná-
lis mátrixelemek megegyeznek a kvantummechanikai 
rendszer energianívóival. Ezzel bevezették a sajátérték 
meghatározásának feladatát a kvantummechanikában. 
Felírták az impulzusmomentum mátrixát, és megoldot-
ták annak sajátérték-problémáit. Erre a cikkre később 
mások úgy hivatkoztak, mint a háromemberes munka 
(Dreimännerarbeit).

Pauli cikke

A háromemberes cikknek és az összes többi, az új kvan-
tummechanikát tárgyaló eddigi közleménynek volt egy 
zavaró hiányossága. Az új kvantummechanika módsze-
reivel eddig még nem sikerült kiszámítani a hidrogén
atom energiaszintjeit. Heisenberg első, a mátrixmecha-
nikáról szóló publikációjában már megemlíti az ezzel 
kapcsolatos problémát [5]. Az okozta a nehézséget, hogy 
a hidrogénatomnál a kinetikus energia periodikus moz-
gásnak felel meg, de a k/r alakú potenciális energia nem 
periodikus. Így a kinetikus energiát Fourier-sorba fejt-
hetjük, de a potenciális energia felírásához Fourier-in-
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tegrálra lenne szükség. A kinetikus energia felírásához 
tehát diszkrét, a potenciális energiához pedig folytonos 
indexű mátrixokra lenne szükség. Ezt a problémát elő-
ször Paulinak sikerült megoldania [22]. Azt használta ki, 
hogy a k/r potenciál estén az

		 A = p × L – mk (r/r)	 (34)

Lenz-vektor is mozgásállandó. Itt p, L és r a klasszikus 
impulzus-, impulzusmomentum- és helykoordináta-
vektor. Heisenberg a következő szavakkal reagált az új 
eredményre: „Valószínűleg nem kell neked leírnom, 
hogy mennyire örülök a hidrogénatom új elméletének.” 
[3] A fizikusok többségét Pauli cikke győzte meg, hogy 
igaz a kvantummechanika új elmélete.

Schrödinger hullámmechanikája 
és a mátrixmechanika kapcsolata
Miközben folyt Heisenberg gondolatainak értelmezése 
és továbbfejlesztése, megjelent Schrödinger cikke, mely-
ben egy teljesen más leírást adott a kvantummechanikai 
jelenségek tárgyalására [23]. Ez volt a hullámmechani-
ka, és azon belül a Scrödinger-egyenlet megjelenése. 
A munka a következő gondolattal kezdődött: „Ebben a 
közleményben mindenekelőtt azt kívánom kimutatni 
a hidrogénatom legegyszerűbb (nem relativisztikus és 
perturbálatlan) esetére, hogy a szokásos kvantumfelté-
tel helyettesíthető egy olyan követelménnyel, amelyben 
nincs szó egész számokról. Így sokkal természetesebb 
módon, a rezgő húr csomópontjainak számához ha-
sonlóan adódik az egészszámúság.” Tehát, szemben 
a mátrixmechanikával, itt már az első közleményben 
megjelenik a hidrogénatom problémájának a megoldása. 
Schrödinger hamarosan közli következő cikkét, sokat-
mondó címmel: A Heisenberg–Born–Jordan-féle kvan-
tummechanika kapcsolata az enyémmel [24]. Az egyik 
lábjegyzetben megjegyzi, hogy elméletének kidolgozá-
sára az ösztönzést de Broglie disszertációja [25] és Ein
stein végtelenül messzire tekintő megjegyzései adták, 
majd kitér arra, hogy miért nem hivatkozott korábban 
Heisenberg cikkére: „Nem tudok arról, hogy elméletem 
Heisenbergével bármiféle genetikus kapcsolatban állna. 
Elméletéről természetesen tudomásom volt, az azonban 
a transzcendes algebra igen nehézkesnek látszó mód
szerei és a szemléletesség hiánya folytán elriasztó, hogy 
azt ne mondjam: visszataszító hatást tett rám.” [24] Vé-
gül sikerült legyőznie ellenállását, és operátorok beveze-
tésével megmutatta, hogy a két elmélet matematikailag 
ekvivalens. Megmutatta, hogy a qi hely- és pi impulzus
operátoroknak ki kell elégíteniük a (33) felcserélési relá-
ciókat, és a többi operátor, köztük az energia operátora is 
– ami bizonyos feltételek esetén a H Hamilton-operátor 
– előállítható ezen operátoroknak a klasszikus fizikában 
megismert függvényei segítségével. A Heisenberg által 
bevezetett kvantummechanikai mennyiségek a megfe-
lelő fizikai mennyiségekhez rendelt operátoroknak egy 

teljes ortogonális függvényrendszeren vett mátrixai. 
Amikor korábban az adott klasszikus mennyiséghez ren-
delt kvantummechanikai mennyiségekről beszéltünk, 
beszélhettünk volna operátorokról is, de ezt Heisenberg 
még nem tudhatta.

Hátra van még, hogy belássuk, a Heisenberg által be-
vezetett mátrixok éppen a megfelelő kvantummechani-
kai operátorok mátrixai. A következőkben a napjainkban 
szokásos jelölést használjuk.

Az időtől függő Schrödinger-egyenlet teljes rendsze-
re a

		 e
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E t
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−
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alakban írható, ahol Φi , illetve Ei a HΦ = EΦ sajátérték
probléma (időtől független Schrödinger-egyenlet) saját
függvénye és sajátértéke. Ha most O egy tetszőleges 
operátor, akkor a fenti bázison vett mátrixelemei
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A (11), (28)–(30) egyenletekből látjuk, hogy Heisen-
berg a Fourier-sorokból a Kramers-szabályok alkalma-
zásával a fizikai mennyiségek mátrixait – anélkül, hogy 
tudta volna – éppen az energia-sajátfüggvények bázisán 
írta fel, és az O(m, n) átmeneti mátrixelemeket a mozgás-
egyenletek és a felcserélési relációk segítségével kapta 
meg.

Következmények
Heisenberg „a kvantummechanika megalkotásáért” No-
bel-díjat kapott 1932-ben. Állítólag meglepődött, hogy 
egyedül kapta, nem pedig Bornnal és Jordannal meg-
osztva. Born másik tanársegédje, Pauli is Nobel-díjat 
kapott 1945-ben, „az úgynevezett Pauli-féle kizárási elv 
felfedezéséért”. Vajon mit érezhetett Born professzor, 
amikor azt tapasztalta, hogy tanársegédjei sorra kapják 
a Nobel-díjakat? Végül ő is kapott egyet 1954-ben, „a 
hullámfüggvény statisztikus értelmezéséért”. Schrödin-
ger Heisenberget követve és Dirackal megosztva kapta 
meg a Nobel-díjat 1933-ban, „az atomelmélet új, termé-
keny formájának felfedezéséért”. Az 1969-es Oppenhei-
mer-díj átvételekor Dirac visszagondolva fiatal éveire így 
fogalmazott: „Az ezerkilencszázhuszonöttel kezdődő 
néhány évet a fizika aranykorának lehet nevezni. Ebben 
az időben alapvető elgondolásaink igen gyorsan fejlőd-
tek, és mindenki számára volt bőven tennivaló. Ma már 
világosan látjuk az ezen aranykor folyamán kimunkált 
gondolatok korlátait is. Mindannyian azt reméljük, hogy 
beköszönt majd egy új aranykor, amelyet valami igen 
nagy hatású gondolat fog elindítani, s mely majd újból a 
felgyorsult fejlődés korszaka lesz, nagy reményekkel és 
félelmekkel.” [26]
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Szabó Gábor a Hun-ren Bölcsészettudomá-
nyi Kutatóközpont filozófiai intézetének tudo-
mányos tanácsadója. Kutatási területe a modern 
fizika filozófiai kérdései, valamint a valószínű-
ség és a kauzalitás metafizikája.

A Bell-egyenlőtlenségek köztudottan kizárják az EPR-kor-
relációk lokális, konspirációmentes, közös ok-típusú ma-
gyarázatát. De vajon létezik a közös okoknak olyan 
kvantumos általánosítása, amely lehetővé tesz egy ilyen 
magyarázatot?

1. Bevezetés
Ha egy városba vezető autóutak forgalmát tanulmányoz-
zuk, sokféle korrelációra lehetünk figyelmesek. regge-

lenként például az utakon megnő a városba igyekvő autók 
száma, az esti órákban pedig a városból kiáramló autóké. 
máskor az egyik úton akadozik a forgalom, a másikon 
pedig megélénkül. a sokféle korreláció magyarázata 
azonban mindig kétfajta oksági mintázatba illeszkedik. 
az utakon esténként megnövekedő forgalom oka a mun-
kaidő vége; az egyik úton megnövekedett forgalomnak 
pedig a másik út akadozó forgalma, amelyről az autósok a 
rádióból értesülhetnek. Úgy is fogalmazhatunk, hogy az 
első esetben a korrelációt egy további esemény, egy kö-
zös ok magyarázza, a második esetben pedig a korreláló 
események közötti közvetlen oksági kapcsolat.

Hogy egy korreláció magyarázata mikor milyen kau-
zális típusba esik, arra nincsen általános szabály. némely 
esetben nyilvánvaló, más esetekben pedig valószínűtlen 
a közvetlen kauzális kapcsolat a korreláló események kö-
zött. Kizárni a közvetlen oksági viszonyt azonban csak 
akkor lehetséges, ha azt valamilyen természettörvény 
tiltja. teljes általánosságban ilyen természettörvényt 
csak egyet ismerünk: a relativitáselméletnek azt az ál-
lítását, hogy minden kauzális hatás terjedési sebessége 

6. Jánossy Lajos (szerk.), györgyi géza (ford.): kvantummechanika. 
cikkgyűjtemény. akadémiai kiadó, budapest, 1971.
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kisebb a fénysebességnél. Ha tehát két korreláló esemény 
térszerűen szeparált, akkor a korreláció magyarázata 
csak közös okok segítségével lehetséges.

A kvantumelmélet EPR-korrelációi pontosan ilyen 
térszerűen szeparált események közötti korrelációk, 
amelyek kizárják a direkt típusú kauzális viszonyt. Ma-
gyarázatukhoz tehát olyan közös okokat kell keresni, 
amelyek egyfelől a korreláló események közös kauzális 
múltjában fekszenek, másfelől a korreláció közös okai-
nak minősülnek. De milyen események minősülnek kö-
zös oknak?

2. A közös ok fogalma

A közös ok fogalmához elégséges feltételt nehéz volna 
megadni, de egy nagyon fontos szükséges feltétel a ren-
delkezésünkre áll. A feltétel a tudományfilozófus Hans 
Reichenbachtól származik, aki a közös ok fogalmát elő-
ször definiálta valószínűségi fogalmak segítségével (Ho-
fer-Szabó et al., 2013). Reichenbach gondolatának lénye-
ge, hogy a közös ok, amennyiben feltételként kezeljük, 
a korreláló eseményeket leárnyékolja egymástól, vagyis 
a korreláló eseményeket feltételesen függetlenné teszi. 
Legyen A és B két esemény, A / B a két esemény konjunk-
ciója és

p(A / B) ≠ p(A) p(B)

a közöttük levő korreláció egy klasszikus valószínűségi 
térben. Az eseménytér egy {Ck} partícióját – vagyis olyan 
események halmazát, amelyek páronként kizárják egy-
mást és uniójuk a teljes eseménytér – a korreláció közös 
okának nevezzük, amennyiben minden k-ra az alábbi fel-
tételes függetlenség teljesül:

p(A / B|Ck) = p(A|Ck) p(B|Ck) ,

ahol
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a klasszikus feltételes valószínűséget jelöli. A fenti fel-
tételes függetlenség azt fejezi ki, hogy a korreláció az 
A és B események között eltűnik, amennyiben a való-
színűségeket a közös okokra kondicionáljuk. A beve-
zető példánkra alkalmazva: ha a napot a munkaidő 
szempontjából releváns napszakokra osztjuk fel, akkor 
a különböző utak forgalma között nem lesz korreláció. 
Se reggel, se délben, se este külön-külön nem tapaszta-
lunk korrelációt, hiszen a forgalom minden úton a nap-
szaknak megfelelően rögzített. Korrelációt csak akkor 
kapunk, ha a forgalmat a teljes napra összegezzük.

Az 1960-as évek talán legmeglepőbb felfedezése az 
volt, hogy az EPR-korrelációk nem magyarázhatók kö-
zös okokkal. A felfedezés, amelynek elméleti és filozófiai 
jelentőségét alig lehet túlbecsülni, John Stewart Belltől 
(1964/2004) származott, és a híres Bell-egyenlőtlensé-
gekben öltött testet. A Bell-egyenlőtlenségek és a kö-

zös okok viszonya azonban némi pontosításra szorul. 
Először is az EPR-korrelációk kísérleti szinten maguk 
is feltételes korrelációk, mivel különböző mérésvá-
lasztásokhoz tartozó kimenetek közötti korrelációkat 
jelentenek. Ezektől a mérésválasztásoktól Bell megkö-
vetelte, hogy statisztikusan függetlenek legyenek a kö-
zös okoktól. Ez az ún. no-conspiracy feltétel mintegy a 
szabad mérésválasztást garantálja. Másodszor Bell azt is 
megkövetelte, hogy a különböző mérésválasztásokhoz 
tartozó kimenetek közötti korrelációkat ne más-más 
közös okok magyarázzák, hanem ugyanazok a közös 
okok – vagyis, hogy a közös okok ún. közös közös okok 
legyenek. Ezek mellett a természetes elvárások mellett 
az EPR-korrelációk közösok-típusú magyarázata már 
valóban kizárható.

Az elmúlt hatvan évben számos próbálkozás történt 
a közös ok fogalmának módosítására, illetve a járulékos 
feltételek lazítására (E. Szabó, 2002). Ezek a próbálko-
zások azonban sikertelennek bizonyultak. A Bell-egyen-
lőtlenségek sérülése a kvantumelméletben azt bizonyí-
totta, hogy az EPR-korrelációk nem illeszthetők be egy 
olyan kauzális mintázatba, amely egyben a relativitás
elmélet követelményeinek is megfelel.

3. Kvantumos közös okok

Szigorú értelemben azonban a relativisztikus lokalitás 
feltétele nem fogalmazható meg a Bell-egyenlőtlenségek 
szokásos keretei között. A Bell-egyenlőtlenségek ugyan-
is tisztán valószínűségi állítások, amelyek az események 
téridőbeli lokalizációját csak közvetve, valószínűségi 
függetlenségek formájában reprezentálják. A közös ok 
pontos lokalizációja és a lokalitási feltétel vizsgálata csak 
egy olyan fizikai elméleten belül lehetséges, amely egy-
szerre képes számot adni az események valószínűségé-
ről és lokalizációjáról. Ilyen elmélet a térelmélet.

Azt a kérdést, hogy az algebrai kvantumtérelmélet-
ben érvényes-e a közös ok elve – vagyis térszerűen szepa-
rált korrelált eseményekhez mindig található-e közös ok 
–, először Rédei Miklós (1997) tette fel. Rédei megmu-
tatta, hogy az elv lokálisan végtelen szabadságfokú térel-
méletben mindig érvényes, és a közös ok lokalizálható 
a  korreláló események kauzális múltjának uniójában 
(de a metszetében nem). Az is hamar kiderült azonban, 
hogy Rédei eredménye nem érvényes minden kvan-
tumtérelméletben, például az Ising-modellben, vagyis 
a  közös ok elve érzékenyen függ az algebra típusától 
(Hofer-Szabó, Vecsernyés 2012). Felvetődött a kérdés, 
hogy vajon lehetséges-e a közös ok fogalmát úgy álta-
lánosítani, hogy az elv érvényes legyen a kvantumtér
elméletek szélesebb körében is. A keresés a kvantumos 
közös ok irányába mutatott. Miről is van szó?

A klasszikus valószínűségelmélet mögött egy klasszi-
kus eseménytér áll, ahol az események a klasszikus logi-
ka szabályainak engedelmeskednek. A kvantumelmélet 
eseménytere azonban nem klasszikus, és így a ráépülő 
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valószínűségelmélet sem az. A kvantumelméletben az 
eseményeket egy Hilbert-tér projektoraival reprezen-
táljuk, a valószínűséget pedig egy állapottal (egyre nor-
mált, pozitív lineáris funkcionállal). Legyen Â és B̂ két 
eseményt reprezentáló projektor, ϕ pedig egy állapot a 
Hilbert téren. A két esemény közötti korrelációt ekkor a

ϕ(Â B̂)  ≠  ϕ(Â)ϕ(B̂)

egyenlőtlenség reprezentálja. (A szokásos braketjelö-
lésben a ϕ(Â) valószínűség Gϕ|Â|ϕH volna. Mi itt még-
is az előbbi jelölést használjuk, mivel ez jobban mutatja 
a klasszikus és kvantumos valószínűség közötti szoros 
kapcsolatot.)

A klasszikus esethez hasonlóan a kvantumelmélet 
eseményterének egy partícióját is olyan események al-
kotják, amelyek páronként kizárják egymást, és unió-
juk a teljes eseménytér. A Hilbert-téren egy ilyen par-
tíciót páronként merőleges és az egységre összegződő 
projektorok reprezentálnak. Ennélfogva a kvantumos 
közös ok  a Hilbert-tér egy olyan {Ĉk} partíciója, ahol 
minden k-ra az alábbi feltételes függetlenség teljesül:

ϕ (ÂB̂|Ĉk ) = ϕ (Â|Ĉk )ϕ (B̂|Ĉk ) ,
ahol

( )
( ):=

( )
k k

k
k

ˆ ˆˆC ACˆÂ |C
Ĉ

φφ
φ

a kvantumos feltételes valószínűség.
Első látásra a kvantumos közös ok definíciója nem 

sokban különbözik a klasszikus közös ok definíciójától. 
Mindkét esetben a közös ok olyan események halmaza, 
amelyekre kondicionálva a korreláció eltűnik. A nem 
klasszikus eseménytérben azonban a közös okok nem 
feltétlenül mérhetők egyszerre (kompatibilisek) a kor-
reláló eseményekkel. Formálisan ez azt jelenti, hogy a 
közös okokat reprezentáló projektorok nem feltétlenül 
kommutálnak a korreláló eseményeket reprezentáló pro-
jektorokkal (jóllehet maguk a térszerűen szeparált kor-
reláló események projektorai kommutálnak egymással). 
A kvantumos közös okokat éppen ez a nem kommuta
tivitás teszi általánosabbá a klasszikus közös okoknál 
(Hofer-Szabó, Vecsernyés 2018).

A közös ok kvantumos általánosítása két szempont-
ból is eredményesnek bizonyult. Egyrészt kiderült, hogy 
a kvantumos közös okok bevezetésével a közös ok elve 
tágabb körben, például az Ising-modellben is érvény-
ben marad, másfelől – igen csak meglepő módon – az is 
kiderült, hogy a Bell-egyenlőtlenségeket maximálisan 
sértő EPR-korrelációkhoz mégis csak adható közösok-
típusú magyarázat, ráadásul olyan, amely a közös okot 
a korreláló események közös múltjában lokalizálja.

Ez utóbbi eredmény azonban ellentmondani lát-
szott a Bell-egyenlőtlenségek szokásos értelmezésé-
nek. Hogyan lehetséges ugyanis az EPR-korrelációk 
közösok-típusú, ráadásul relativisztikus magyarázata, 
ha a Bell-egyenlőtlenségek épp az ilyen magyarázatokat 
zárják ki?

A válasz a nem klasszikus feltételes valószínűségek-
nek a klasszikustól eltérő viselkedésében rejlik. A klas�-
szikus valószínűségelméletnek ugyanis fontos tétele az 
ún. teljes valószínűség tétele, amely azt garantálja, hogy 
bármely esemény valószínűsége mintegy visszaépíthető 
bármely teljes körű feltételrendszerből. Formálisan:

	 ( ) = ( | ) ( ).k k
k

p A p A C p C∑

A közös okokra vonatkoztatva ez azt jelenti, hogy a 
korreláló események valószínűsége rekonstruálható lesz 
a közös okokra vett feltételes valószínűségek súlyozott 
összegeként. Ismét csak a bevezetőben már említett 
példát említve: bármely úton a napi forgalom nagysága, 
vagyis az autók relatív gyakorisága, rekonstruálható az 
egyes napszakokra vetített forgalom súlyozott összege-
ként.

Bár a teljes valószínűség tétele rejtve marad a közös 
ok definíciójában, mégis fontos szerepet játszik a kor-
relációk magyarázatában. Azt biztosítja ugyanis, hogy 
a jelenség egy olyan finomabb leírása, amely a közös 
okokat is figyelembe veszi, kompatibilis legyen a felszí-
ni, megfigyelhető korrelációkkal. A felszíni korrelációk 
tehát mintegy a jelenségek durvább leírásaként jelent-
keznek. Korrelációt akkor látunk, ha elfeledkezünk a 
jelenség mélyebben fekvő okairól.

A teljes valószínuség tétele azonban nem érvényes 
a kvantum-valószínűségelméletben. Tipikus esetben 
ugyanis

	 ( ) ( ) ( ),k k
k

ˆ ˆˆ ˆA A |C Cφ φ φ≠∑

és pontosan ez teszi lehetővé, hogy a kvantumos közös 
okokból ne lehessen levezetni a Bell-egyenlőtlensége-
ket. A Bell-egyenlőtlenségekben ugyanis éppen a teljes 
valószínűség tétele révén tudunk következtetni a hát-
térben álló közös okok statisztikájából a felszíni korre-
lációkra. A teljes valószínűség tételének feladásával ez 
a logikai lánc a közös ok és a felszíni korrelációk között 
megszakad. A kvantumos közös okok segítségével tehát 
csak azon az áron magyarázhatjuk az EPR-korreláció-
kat, ha feladjuk a felszíni korrelációk rekonstruálható-
ságát a közös okokból.

Kérdés, mekkora ez az ár, amit a klasszicitás feladása 
miatt meg kell fizetnünk.

4. Kritikák és nyitott kérdések

A közös ok fogalmának általánosítása éppen a Bell-
egyenlőtlenségek megkerülése miatt nem maradt kri-
tika nélkül. Az egyik kritika éppen a fent említett teljes 
valószínűség tételének feladását érintette (Lazarovici, 
2014). Elfogadható-e egy olyan magyarázat, amely nem 
képes visszaadni a magyarázni kívánt események va-
lószínűségét? Egy másik kritika a közös okok egy bizo-
nyos alosztályának, a szorzatállapotoknak a trivialitását 
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hangsúlyozta (Cavalcanti, Lal, 2014). Harmadrészt, az 
sem teljesen világos, hogy pontosan hogyan is interpre-
tálhatók a kvantumos közös okok. Ha a közös okok nem 
kompatibilisek az okozatokkal, akkor vajon realizálha-
tók-e egyszerre? A  teljes valószínűség tételének sérülé-
se nem épp azt fejezi-e ki, hogy vagy egy olyan kísérle-
ti elrendezést választunk, amelyikben az eredeti ϕ (Â ), 
ϕ (B̂) és ϕ (ÂB̂ ) valószínűségeket kapjuk, de ekkor a kö-
zös okokat nem mérhetjük meg; vagy pedig egy olyan 
kísérleti elrendezést, amelyikben a közös okokat meg-
mérve a ϕ (Â|Ĉk ), ϕ (B̂|Ĉk ) és ϕ (ÂB̂|Ĉk ) valószínűségeket 
kapjuk, de ezekből nem vezet út a korreláló események 
eredeti valószínűségéhez? A szituáció nagyban hasonlít 
a kétréses kísérlethez, ahol szintén választanunk kell az 
interferencia fenntartása és a részecskék útjának meg
határozása között. Ezeket a kritikákat fontos szem előtt 
tartani, de talán nem perdöntőek a kvantumos közös 
okok szempontjából. Megmutatható ugyanis, hogy bár 
a teljes valószínűség tétele valóban nem analitikus igaz-
ság a  kvantum-valószínűségelméletben, bizonyos ese-
tekben a kvantumos közös ok alkalmas megválasztásával 
mégis csak teljesül (Hofer-Szabó, Szalay, 2025). A teljes 
valószínűség tételének teljesülése tehát a leárnyékolási 
tulajdonság mellett egy további kritérium lehet a tényle-
ges közös okok kiválasztásához.

A kvantumos közös okok számos tulajdonsága még 
feltérképezésére vár, de egy fontos probléma kezelése 
különösen sürgető. Amint említettük, a kvantumvaló-
színűségek a szokásos operacionalista értelmezésben 
klasszikus feltételes valószínűségek, amelyek adott mé-
résválasztások mellett a kimenetek statisztikáját rögzí-
tik (E. Szabó, 2001). A kvantumos közös okos magya-
rázat tehát csak akkor lehet teljes, ha illeszkedik ebbe 
az operacionalista értelmezési keretbe. Ennek az értel-
mezési keretnek azonban, amint azt láttuk, fontos része 
a mérésválasztások és a közös okok statisztikus függet-
lenségi követelménye, vagyis a no-conspiracy feltétel. 
Az, hogy a kvantumos közös okok valóban teljesítik-e 

ezt a feltételt, azaz az EPR-korrelációk konspirációmen-
tes magyarázatát adják-e, egyelőre nyitott kérdés.
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1. mikroszkopikus-makroszkopikus 
átmenet
a kvantummechanika száz év alatt teljesen váratlan javas-
lategyüttesből a fizika egyik pillérévé vált, melyet az azóta 
végzett mérések kivétel nélkül megerősítettek. ezzel fizikai 
világunk két szintre, mikroszkopikus és makroszkopikus je-
lenségekre hasadt, melyek alapfeltevései teljesen különbözőek. 
ugyanakkor meg vagyunk győződve arról, hogy világunk 
egy és oszthatatlan. mennyiben békíthető ki ez a két szint? 
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Összeférhetőségüket kizárólag egy olyan fogalmi rendszer 
segítségével ellenőrizhetjük, amely interpolál a kvantumos 
és a klasszikus tartomány határán, és ezért mindkét szinten 
alkalmazható.

Hol is keressük a kvantumos-klasszikus átmenetet? A 
kvantummechanika egyik meglepő eredménye az elemi 
részecskék definíciója. A dinamikát lineáris terekben meg-
valósító formalizmusban természetes módon azonosíthatók 
a dinamikai folyamatok elemi, diszkrét lépései a szimmet
riák irreducibilis ábrázolásai segítségével. Ennek megfele-
lően a klasszikus fizikából kiindulva megfigyeléseink csak 
akkor érik el a kvantumos szintet, amikor felbontásuk ele-
gendő az egyes elemi gerjesztések követéséhez. Akkor azon-
ban a mérés olyan pontosságúvá válik, hogy a mérőeszköz 
elkerülhetetlen kölcsönhatása a mért rendszerrel – elkerül
hetetlen, hiszen ennek alapján beszélhetünk egyáltalán 
mérésről – befolyásolja a mérés eredményét. Ezzel pedig a 
determinizmus empirikus ellenőrzése lehetetlenné vált, hi-
szen definíció szerint nem ismerjük mérőeszközünk kezdeti 
feltételét.

A kvantumos-klasszikus átmenet megértését célzó 
és az alábbiakban vázolt javaslat abból áll, hogy a kvantu-
mos-klasszikus átmenet helyett a mikroszkopikus-makrosz-
kopikus átmenetre fordítsuk figyelmünket – az iskolában 
megismert zárt rendszerek helyett nyitott rendszerek meg-
fogalmazásában. Ennek megfelelően fogalmazzuk meg úgy 
a törvényeket, hogy azok tartalmazhassák a megfigyelést 
elkerülő, de a megfigyelt rendszerrel kölcsönható dinami-
kai szabadságfokok hatását.

2. Nyílt rendszerek

A nyílt rendszerek leírása két egymástól függetlennek 
tűnő problémat tartalmaz. (a) A környezet általában sok-
kal nagyobb, összetettebb, mint a megfigyelt rendszer. 
Hogyan találjuk meg a rendszer számára fontos környe-
zeti szabadságfokokat? (b) Hogyan illeszthetjük be eze-
ket a megfigyelt rendszer dinamikájába?

Mindkét fent vázolt probléma egyidejű megoldását 
először a klasszikus fizikában tárgyaljuk, az x és y ko-
ordinátákkal leírt rendszer és környezet együttesének 
zárt dinamikáját leíró S[x, y] hatásból kiindulva [1]. A 
(b) kérdés megválaszolása, a nyílt rendszer mozgás
egyenletének levezetése két lépésből áll. (i) Oldjuk meg 
a környezet δS[x, y]/δy = 0 mozgásegyenletét tetszőleges 
x(t) trajektóriára! (ii) Az így kapott y[x](t) trajektóriát 
helyettesítjük be a rendszer variációs mozgásegyenle
tébe: δS[x,  y]/δx|y = y[x] = 0. A nyílt dinamika formális 
problémája abban nyilvánul meg, hogy ezt a nyílt moz-
gásegyenletet nem lehet a természetesnek tűnő Seff[x] = 
S[x, y[x]] hatásból származtatni, hiszen
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A probléma megoldása kézenfekvő: használjunk két 
koordinátát a rendszer minden szabadságfokára, x → (x, x′ ), 

Seff [x, x′ ] = S[x, y[x′ ]], melyeket csak a mozgásegyenlet 
megoldása után teszünk egyenlővé. Az új koordinátát vá-
lasszuk meg úgy, hogy ez a megkétszereződés formális ma-
radjon, azaz mindkét koordinátára ugyanazt a trajektóriát 
eredményezze a variációs mozgásegyenlet! Ennek érdeké-
ben kétszer követjük végig a mozgást. Először előre halad-
va az időben, majd a végén megfordítjuk az időirányt, és 
visszafelé is végigkövetjük az időtükrözött mozgást, míg a 
kezdeti időig visszajutunk. Ez persze felesleges megket-
tőződés zárt dinamika esetében, de várjunk egy kicsit a 
javaslat elbírálásával!

A hatás megválasztása érdekében az így kapott és az 
ábrán vázolt x̃(t ̃   ) trajektóriát két részre bontva x̃(t ̃   ) → 
(x+(t), x−(t)) = (x(t), x(2tf − t)) vezetjük be a megkettő-
ződést. A hagyományos S[x] hatással leírt zárt dinami-
ka esetén az S[x+, x−] = S[x+] − S*[x−] hatást választjuk, 
ahol a negatív előjel a t → −t időtükrözésből fakad, és 
a komplex konjugálás a Green-függvények érdekében a 
hatásban bevezetett (itt az egyszerűség miatt nem tár-
gyalt) infinitezimális képzetes tagok miatt szükséges. 
A trajektóriák variációját pedig olyan trajektóriahalma-
zon végezzük el, melyet mindkét trajektóriára kirótt fi-
zikai kezdeti feltétellel és a végső időpontban kiszabott 
x+(tf ) = x−(tf ) lezárással definiálunk. Innen ered a mód-
szer zárt időpálya (Closed Time Path, CTP) elnevezése.

Vegyük észre, hogy ebben a rendszerben minőségi- 
leg új kölcsönhatások vezethetők be, ugyanis a szokásos 
x± ↔ x± kölcsönhatás mellett a zárt rendszerekben isme-
retlen x± ↔ x∓ kölcsönhatásra is lehetőség van. Mivel x± 
környezetét x∓ képviseli, ez utóbbi a rendszer-környezet 
kölcsönhatásnak felel meg. Így oldódik meg a fentebb 
említett (a) probléma: a rendszer számára fontos környe-
zet pont annyira összetett, mint maga a rendszer. Ez jól 
látható az

	       S[x+, x−] = S1[x+] – S1[x−] + S2[x+, x−]

felbontásban, ahol az egyetlen koordinátára vonatkozó 
S1[x] és a koordinátapárok közti kölcsonhatást tartalma-
zó S2[x+, x−] a zárt, illetve nyitott kölcsönhatást írja le.

A  kvantummechanikában a szabadságfokok meg
kettőzésének bevezetése a következő gondolatmenettel 
történik. Egy nyitott kvantumrendszer állapota tipiku-
san kevert, ezért a nyitott kvantumdinamikát a sűrű-
ségmátrix segítségével kell leírni. Tetszőleges fizikai A 
mennyiség várható értékét tekintve,

1. ábra. A mozgást kétszer követjük végig, egyszer oda, majd a 
végpontban végrehajtott időirány megfordítása után, vissza az 
időben. A zárt kölcsönhatás (felső szaggatott vonal) az oda vagy 
a vissza meneten belül történik, a nyitott kölcsönhatás (alsó 
szaggatott vonal) a kétfajta mozgás között lehet jelenik meg
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		 tr[ ] d d ( ),A A x x x A x x ,xρ ρ+ − − + + −= = ∫ 	 (2)

de amennyiben a rendszer tiszta állapotban van, a sűrű-
ségmátrix faktorizálódik, ρ(x+, x−) = Gx+|ψH Gψ|x−H, így 
a fenti várható értékben a Gψ| bra és a |ψH ket állapotok 
kvantumfluktációi, Gψ|x−H és Gx+|ψH függetlenek. Azon-
ban egy kevert állapot sűrűségmátrixa,

		 +( , ) = 1, 2, …n n nn
x x x p x , nρ ψ ψ− + − =∑ 	

nem faktorizálható, ezért nyílt rendszerekben a bra és a 
ket komponens kvantumfluktuációi korreláltak.

A pályaintegrálos formalizmusban ez a szabadság
fokok klasszikus mechanikában megfigyelt megkétszere-
ződéséhez vezet [2]. Az így kialakult formalizmus már jó 
fél évszázada ismert a kvantumelméletben [3–5], csupán 
általánosságának és jelentőségének felismerése váratott 
magára.

Az S[x+, y+, x–, y–] hatásra alapuló pályaintegrálból 
elindulva a környezet szabadságfokainak integrálásával 
kapott Seff[x+, x–] hatás a nyílt dinamikát írja le. A kör
nyezeti szabadságfokok eliminálását a renormálási cso-
port módszerével lehet módszeresen végrehajtani. Ily 
módon a klasszikus, kvantumos, zárt és nyitott dinami-
kát egyaránt leíró hatásfunkcionál felhasználásával új 
lehetőség nyílik a kvantumos-klasszikus átmenet leírá-
sára.

3. A mikroszkopikus folyamatok sajátos 
jellemzői
Mielőtt fő célunkat, a makroszkopikus határesetet tár-
gyalnánk, megemlítünk két olyan kvantumos jelenséget, 
melyeknek el kell tűnniük ahhoz, hogy a klasszikus fi
zikához elérjünk.

Egyik a makroszkopikusan különböző kvantum
állapotok között fellépő interferencia, melynek elnyo-
mását dekoherenciának hívják. Ez a környezettel való 
kölcsönhatásból fakad, és jól megértett folyamat. Te-
kintsünk például egy bútordarabot, melynek a legcse-
kélyebb áthelyezése a szobában lévő levegőmolekulák 
mikroszkopikus átrendeződéséhez vezet. Nem nehéz 
belátni a bútor és a levegő közös zárt dinamikájában, 
hogy mindegyik molekula állapotának megváltozása 
egy egynél kisebb abszolút értékű komplex számszor
zóval csökkenti a bútor két állapota közti interferen
ciát, amely ennélfogva teljesen eltűnik a termodina-
mikai határesetben. A dekoherencia eredményeképp a 
sűrűségmátrix nem diagonális elemei nagyon kicsivé 
válnak, ez azonban bázisfüggő. A koordinátabázisban a 
dekoherenciát a rendszer és a környezet összefonódását 
jellemző S2[x+, x−] tag képzetes része írja le, amely sok-
részecskés rendszerekben a kvantumtérelmélet pertur-
bációszámítása segítségével egyszerűen azonosítható és 
számítható.

A másik kérdéses jelenség a kvantumos világot jel-
lemző indeterminizmus (kvantumfluktuációk), melyek 
elnyomása is feltétele a determinisztikus klasszikus tör-

vények megjelenésének. A determinizmus két változat-
ban szokott megjelenni a köztudatban. A és B jelenség 
determinisztikus logikai kapcsolatban van, A ↔ B, ha el-
mondható, hogy A akkor és csak akkor jelenik meg ami-
kor B. A determinizmus a filozófusok számára inkább az 
ok-okozat, röviden okság törvényeként ismeretes, sem-
mi sem történik ok nélkül. Ez annak felel meg, hogy ha 
A megtörtént akkor B is bekövetkezik, A → B. Kant óta 
elfogadott feltételezés, hogy ez csupán gondolkodásunk 
rendezőelve. A filozófusok által használt ok és  okozat 
különbsége, azaz hogy az ok időben megelőzi az okoza-
tot, nehezen értelmezhető a klasszikus fizikában, amely 
csupán egy mozgás, illetve folyamat két különböző idő-
pontban felvett állapota közti összefüggésekre szorítko-
zik. A klasszikus determinisztikus törvények szerint a 
két állapot közül az egyik szükségképpen meghatározza 
a másikat, függetlenül az időbeli sorrendtől.

A kvantummechanikában nem valósul meg sem a 
determinizmus, sem pedig az okság elve. A determiniz-
mus hiánya a Heisenberg-féle határozatlansági reláció 
alapján érthető meg. Két fizikai mennyiség kompatibilis, 
ha  az azokat leíró operátorok kommutálnak. A határo
zatlansági reláció szerint egy rendszeren két nem kom
patibilis fizikai mennyiség egymás után mért értéke 
között csak valószínűségi, nem pedig determinisztikus 
kapcsolat van. Az okság elvének megsértése pedig leg-
könnyebben az ún. EPR-paradoxon [7] példáján keresz-
tül érthető meg. Tekintsünk két mikroszkopikus rend-
szert, melyek egy pillanatban kölcsönhatnak, és ennek 
folyamán állapotuk összefonódik! A kvantummechani-
ka szerint a két rendszeren egyidejűleg elvégzett méré-
sek eredménye korrelált az ún. Bell–egyenlőtlenségek 
sérülése miatt, függetlenül a két rendszer távolságától. 
A  jelenség kísérleti ellenőrzésére számos technikai 
probléma megoldása után csak 48 évvel később került 
sor, melyet számos további mérés követett az elképzel-
hető hibaforrások kiküszöbölésével.

Ezek szerint az egyik mérés által kapott információ 
a fénysebességnél gyorsabban módosítja a másik rend-
szert. A speciális relativitáselmélet szerint a térszerűen 
szeparált mérések időbeli sorrendje függ attól, hogy 
milyen sebességgel mozog a sorrendet felállító megfi-
gyelő, azaz tetszőleges. Tehát a két mérés eredménye 
közt nem állhat fenn oksági kapcsolat – Kant feltevését 
megerősítve – helyette egy régebben megtörtént és a 
megfigyelést elkerülő kölcsönhatást kell feltételeznünk. 
Erről lásd még a Fizikai Szemle jelen számában Szabó 
Gábor cikkét a „kvantumos közös ok” hipotéziséről. 
Klasszikus fizikai mérések esetén az okság ilyen meg-
kerülése nyilvánvalóan illuzórikus, például a szinkro-
nizált órák korrelált viselkedése triviális jelenség, de 
az említett mikroszkopikus kisérlet esetében biztosak 
lehetünk abban, hogy csak a mérés által, a mérés idejé-
ben kiváltott folyamatok korrelációjáról van szó. A cikk 
további részében azt fogjuk tárgyalni, hogyan megy át a 
mikroszkopikus indeterminizmus makroszkopikus de-
terminizmusba.



Polónyi János: A Kvantumos és klasszikus tartomány határán 231

4. Valószínűség-elmélet

Folytassuk most gondolatmenetünket, mellyel az inde-
terminisztikus mikroszkopikus törvények determinisz-
tikus makroszkopikus törvényekbe történő átalakulását 
követjük! Ennek az átmenetnek megértése az indetermi-
nisztikus jelenségek matematikai leírásán, a Kolmogorov 
által megfogalmazott axiómákra alapuló valószínűség-
számításon alapul.

Mit is jelent egy jelenség valószínűsége? Objektívnek 
mondható, ha a jelenséget jellemzi, szubjektívnek pedig, 
ha a jelenséget vizsgálóra vonatkozik. A Bayes-tétel szo-
kásos értelmezése arra utal, hogy a valószínűség az isme-
reteket gyűjtő gondolkodót jellemzi.

Az objektív jelleget helyezi előtérbe a nagy számok 
törvénye: egy véletlen X jelenség egymástól független 
megvalósulásait vizsgálva a relatív gyakoriság, egy adott 
érték megjelenésének Nr és az összes megfigyelés Nt 
hányadosa, prel = Nr/Nt , a jelenség p(X) valószínűségéhez 
tart az Nt → ∞ határátmenetben. Sajnálatos módon ez 
a valószínűségnek egy körkörös definíciójához vezet, és 
csupán azt biztosítja, hogy a relatív gyakoriság és a való-
színűség eltérésének a valószínűsége, p(prel − p(X)) kellő-
en nagy Nt-re tetszőlegesen kicsi.

A valószínűség eredetének kérdésében Kolmogorov 
axiómái sem segítenek, ezek csupán a legegyszerűbb, 
azaz elemi események valószínűsége ismeretében szab-
ják meg az összetettebb események valószínűségét. Az 
elemi események valószínűsége eredetének kérdése pe-
dig túlmutat a matematikán, és a jelenségek részletesebb 
ismeretét, fizikai megközelítést igényel. Jaynes értelme-
zése szerint a valószínűségszámítás a logika kiterjesztése 
[8]. Fontos megjegyezni, hogy ugyan a klasszikus fizika 
valószínűségei kielégítik Kolmogorov axiómáit, kvan-
tumfolyamatok esetén ez csak teljes dekoherencia esetén 
történik meg.

A determinisztikus klasszikus fizikában nincs helye 
objektív bizonytalanságnak. Tehát itt a valószínűség 
szubjektív, a megfigyelés véges felbontásából vagy pe-
dig a megfigyelő véges információfeldolgozási képes
ségéből fakad. Ez persze nem azt jelenti, hogy bárki 
bármit állíthat; azonos részleges információval ren-
delkező gondolkodóknak azonos következtetésre kell 
jutniuk.

A valószínűség a kvantummechanikában objek-
tív módon, konstruktív definícióval jelenik meg a 
Born-szabály révén, amely egy mérés lehetséges ered-
ményeinek előfordulási valószínűségét szabja meg. 
Ez a valószínűség nem a megfigyelés hiányosságaiból 
ered, és ennélfogva objektív annak ellenére, hogy em-
pirikus ellenőrzése a nagy számok törvényén alapul. 
Ennek belátására elegendő elképzelni két kölcsönha-
tó részecske tiszta állapotát melyben a két komponens 
összefonódik. A kvantumállapot információnk összeg-
zéseként fogható fel, tehát a tiszta állapot tartalmazza 
az adott rendszerről megszerezhető maximális infor
mációt. Azonban ennek a birtokában sem tudunk sem-

mit egyetlen részecske állapotáról amennyiben az ös�-
szefonódott egy másikkal. Más szóval a mérés folyamán, 
amikor a mért rendszer és a mérőeszköz kölcsönhat és 
összefonódik, információt nyerünk és vesztünk, nem 
tudjuk kinyerni a teljes információt a mért rendszert 
alkotó részecskékről. Ezen a ponton kapcsolódik össze 
az információelmélet és a kvantummechanika, melynek 
szabályai a részleges információ optimális és módsze-
res alkalmazásának tűnnek. Tehát a klasszikus fizikát a 
kvantummechanikából származtatva elkerülhetetlen-
nek tűnik az indeterminizmus.

5. A központi határeloszlás-tétel és a 
méréselmélet

Hogy lehet elképzelni a determinisztikus törvények 
megjelenését az előző fejezet végkövetkeztetése fényé-
ben? Keressük a választ a valószínűségszámítás központi 
határeloszlás-tétele segítségével, mely olyan numerikus 
értékű ξ valószínűségi változóra alkalmazható, melynek 
mind a –ξ várható értéke, mind pedig az attól való eltérés 
négyzetének a várható értéke, 22 ( )σ ξ ξ= − , véges. A té-
tel szerint N független megvalósulás átlagának eloszlása 
olyan normális eloszláshoz tart, melynek várható értéke –ξ, 
és az attól való eltérés négyzetének várható értéke σ2/N. 
Tehát az átlag fluktuációja az eredeti szórás 1/√–N-szere-
se, ez pedig kellően nagy N-re tetszőlegesen kicsi lehet.

Ez a tétel az egyensúlyi statisztikus fizika megalapo-
zásában döntő fontosságú, mert segítségével válnak ért-
hetővé a termodinamikai határesetben a véletlenszerű 
fluktuációkból kiemelkedő determinisztikus törvények, 
melyeket a termodinamika intuitív módszerével is fel 
lehet térképezni. A tétel alkalmazása lokális fizikai men�-
nyiségekre azért korlátozott, mert ezek a mennyiségek 
általában nem függetlenek. Ezt a feltételt kerüli meg a 
renormálási csoport módszere, mely felfogható a köz-
ponti határeloszlás tételének olyan általánosításaként, 
ahol a valószínűségi változó megvalósulásai között meg-
engedett a korreláció.

Mint említettük, a megfigyelt kvantumjelenségek 
annál a távolságskálánál olvadnak be a klasszikus fizi-
kába, ahol a mérőeszköz felbontása túl durvává válik az 
egyes elemi gerjesztések követésére. Alkalmazható-e 
a központi határeloszlás-tétel a makroszkopikus mé-
rőeszköz számára követhetetlen, nagyszámú kvantu-
mos fluktuációkra is? A válasz nem nyilvánvaló, mert a 
fluktuációkat komplex valószínűségi amplitúdó írja le 
egy adott bázisban, azonban a valószínűség, melyre a 
tétel vonatkozik, általában amplitúdók összegének ab-
szolútérték-négyzete, melyből ráadásul a dekoherencia 
elnyomhatja az interferenciatagokat. A tétel érvény-
ben maradása nemcsak a determinizmus megjelenése 
szempontjából érdekes, a statisztikus fizika sokaságra 
alapuló leírásának jobb megértéséhez is elvezethet izo-
lált kvantumrendszerek esetében [9]. A központi határ
eloszlás tételének bizonyítása pár sor a generálófüggvény 
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használatával. Hasonló függvény a CTP formalizmusban 
is bevezethető, és szintén egyszerű módon vezet a tétel 
állításához [10], illetve annak korrelált általánosításához, 
a renomálási csoport gondolatmenetét követve.

Tegyük fel, hogy mérésünk eredménye számos sza-
badságfok átlagának tekinthető. Például egy ampermérő 
mutatójának szöge a mérőeszköz áramkörében mozgó 
töltött részecskék átlagos mozgásának eredményekép-
pen alakul ki. Tekintsük a mutató szögét a megfigyelt 
rendszernek, melynek környezete tartalmazza ezeket 
a töltéseket. A mért mennyiség klasszikus viselkedésé-
nek két elégséges feltétele van, mindkettő a környezetre 
vonatkozik. (i) A környezetnek elég nagynak kell lenni 
ahhoz, hogy könnyen gerjeszthetővé váljon. Erre azért 
van szükség, hogy az így beálló erős dekoherencia ös�-
szhangba hozza a kvantummechanika által adott való-
színűséget Kolmogorov axiómáival. A dekoherencia, 
a sűrűségmátrix nem diagonális elemeinek elnyomása 
információveszteséget jelent. Ez az irreverzibilis lépés 
kíséri a mikroszkopikus jelenségek megjelenését a mak-
roszkopikus szinten. (ii) Kellően sok közelítőleg függet-
len környezeti szabadságfokra legyen a rendszer-kör-
nyezet kölcsönhatás átlagolva ahhoz, hogy a mérés 
eredményének fluktációja elhanyagolhatóvá váljon. Ez 
a feltétel sérül makroszkopikus kvantumjelenségeknél, 
mint például a termodinamika Gibbs-paradoxonjának 
elkerülésénél, a Bose–Einstein-kondenzációnál, a szu-
perfolyékonyságnál vagy a kvantumos Hall-effektusnál. 
Ezekben az esetekben a kölcsönható környezeti szabad-
ságfokok nagy száma ellenére a szabadságfokok erős 
korrelációja, a térbeli lokalitás sérülése lehetővé teszi 
egyes kvantumjelenségek makroszkopikus nagyítását.

Tehát a klasszikus világ sem determinisztikus, csu-
pán az Avogadro-szám elképesztő nagysága a makrosz-
kopikus jelenségekben is szükségképpen jelenlévő in-
determinisztikus kvantumfluktuációkat gyakorlatilag 
felismerhetetlenné, jó közelítéssel elhanyagolhatóvá 
teszi. A determinisztikus klasszikus fizika a termodi-
namikához hasonlóan a makroszkopikus határesetben 
valósul meg. Ezen a ponton válnak el visszafordíthatat-
lanul a gyerekkorunkban kialakított, klasszikus fizikára 
alapozott fogalmaink a fizikai valóságtól.
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 Diósi Lajos elméleti fizikus a Hun-ren Wigner 
fK emeritusz kutatója, az elte magántanára. a 
londoni egyetem vendégprofesszora (1997/98), 
a Wissenschaftskolleg zu Berlin tagja (1998/99), 
az mta doktora (2000), az mta akadémiai Díj 
birtokosa (2012). legismertebb munkái a kvan-
tummechanika alapjait, a kvantumelmélet és a 
gravitáció megfejtendő viszonyát célozzák. Ku-
tat a kvantumelmélet egyéb területein is: nyitott 
rendszerek, mérések, termodinamika, optika, 
informatika. Oktatóként 2001-től itthon elsőként 
tart kvantuminformatika-előadást, tankönyve ma-
gyar kiadása 2017-es.

a kvantumelmélet eredetileg az atomi világ különös 
törvényeit jelentette. Évtizedekig fel sem merült, hogy 
azon túl, a makroszkopikus világban is alkalmazni le-
hetne, vagy tán kellene is. Schrödinger híres 1935-ös 
macskaparadoxona jó előre figyelmeztetett, furcsa hely-
zetekre vezetne, ha makroszkopikus szuperpozí ciók is 

léteznének. a kvantumelmélet sorra érte el sikereit 
egyre újabb rendszerekre, kéz a kézben haladva a kísér-
letekkel. ezek a rendszerek kivétel nélkül mikroszkopi-
kusak, a leírt kollektív jelenségek is mikroszkopikus 
dinamikákon alapulnak. az 1960-as évekre pedig meg-
érik a gondolat, hogy a kvantummechanika kozmoló-
giai méretekben is érvényes következményeit kimutas-
suk. a kvantumgravitáció ma sem rendelkezik egységes 
elmélettel, és kísérleti támogatása csupán közvetett és 
feltételes. a mikroszkopikus világ leírásában diadalmas 
kvantumelméletet egyből a kozmikus méretek világára 
kívántuk alkalmazni, kihagyva a kettő közötti mérete-
ket. az 1990-es évektől tárul fel a mezoszkopikus világ-
nak a sajátos kvantumelmélete és kísérletei. itt lehetne 
értelmezni a mikro- és makrovilág határát, vizsgálni a 
kvantumelmélet esetleges módosulását.
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A kozmológiában egy nemlineáris, tehát módosult 
kvantumelméletet használunk. Lehet, hogy az úgyne
vezett félklasszikus gravitáció1 a jövőben megértendő 
kvantumgravitációnak csupán egy effektív elmélete. Le-
het, hogy fundamentális. A döntéshez kozmológiai mé-
rési adataink ma még nem elegendőek. A félklasszikus 
gravitáció nemrelativisztikus határesete a nemlineáris 
Schrödinger–Newton-egyenlet, ez lesz írásunk központ-
jában. Ez meglepő módon a makroszkópia előtt, már 
a mezoszkópiában jelentős módosulást hoz az eredeti 
Schrödinger-egyenlet jóslataihoz képest. Tárgyalhatóvá 
teszi a schrödingeri paradox szuperpozíciók kérdését.

Schrödinger–Newton-egyenlet
Jánossy Lajos felvetette 1952-ben [1], hogy az elekt-
ron hullámfüggvénye talán mégsem követi a Schrödin-
ger-egyenletet az atomi skálán túl, a hullámfüggvénye 
nem terjedhet ki makroszkopikus méretre. A Schrödin-
ger-egyenletnek módosulnia kell, méghozzá nemlineá-
risan, ha a hullámfüggvény kiterjedése az atomi mére-
teket jelentősen túllépi. Javasolta, hogy az elektron Ψ(r) 
hullámfüggvényének Schrödinger-egyenletében szere-
peljen egy Ψ-függő potenciál:

		
2 3( )= (| |)| ( )| d ,V f rΨ ′ ′ ′− Ψ∫r r r r 	 (1)

ahol az f  függvény legyen monoton növekvő. E poten
ciál hatására a hullámcsomag részei egymást vonzani 
fogják (önvonzás). Ez valóban korlátozza, hogy Ψ(r) 
idővel mennyire terjedhet ki. Ma már tudjuk, hogy ilyen 
korlátozás sem elektronra sem más elemi részre nincs. 
A kvantumelmélet megállíthatatlanul érvényes az ato-
mi világban. Mindmáig, legalábbis, egyetlen mérés sem 
kérdőjelezte meg a lineáris Schrödinger-egyenletet.

Történt viszont a kvantumelmélet első fél évszázada 
után, hogy tapasztalati késztetés nélkül is felmerült a 
kozmológiai kiterjesztés. Ehhez a kvantálást a gravitá
cióra, tehát az einsteini görbült téridőre is alkalmazni 
kellett volna. A kvantumgravitáció konzisztens egyen-
leteit még ma sem ismerjük. De ne szaladjunk ennyire 
előre! Még 1962–63-ban született egy félmegoldás [2]. A 
félklasszikus gravitációelméletben a teret görbítő anyag 
1 �A  kvantumelméletben a „klasszikus” szó jelentése „nem kvantált”, el

térően a relativitáselmélettől, ahol „nemrelativisztikus” az értelme.

kvantált, de a téridő nem, az marad klasszikus. A téridő 
klasszikus Einstein-egyenletének jobb oldala így módo-
sul:

		 4

8
ab ab

G ˆG T .
c
π= Ψ Ψ 	 (2)

A bal oldalon Gab továbbra is a klasszikus téridő görbü-
leti tenzora, a jobb oldalon viszont az univerzumban 
levő kvantált anyag T̂ab energia–impulzus-tenzoroperá
torának a Ψ kvantumállapotban vett várható értéke áll. 
G a newtoni gravitációs állandó, és c a fénysebesség. A (2) 
félklasszikus Einstein-egyenletben a téridőt a kvantált 
anyag energia–impulzus-tenzorának az átlaga görbíti. 
Ezen az egyenleten alapul az ősrobbanásból eredeztetett 
mai kozmológiai modellünk. Márpedig ez az egyenlet 
nemlineárissá módosítja a kvantummechanikát: a kvan-
tált anyag Ψ hullámfüggvénye nemlineáris Schrödin-
ger-egyenletet fog követni. Könnyebb ezt a newtoni ha-
táresetben látni.

A newtoni határesetben a (2) félklasszikus Einstein-
egyenletnek csak a 00 komponense releváns. A követke-
ző közelítéseket használhatjuk, ha a c fénysebességben a 
vezető tagokra szorítkozunk:

		 00 2

2
,G

c
= − ∆Φ 	 (3)

		 2
00

ˆ ˆT c .= u 	 (4)

Itt Δ a Laplace-féle differenciáloperátor, Φ a Newton-
potenciál, û  a nemrelativisztikusnak feltételezett kvan-
tált anyag térbeli tömegsűrűség-operátora. Beírva a fenti 
két kifejezést a (2) egyenletbe a fénysebesség kiesik, és 
megkapjuk a newtoni határesetet:

		 ( ) 4 ( ) ( ) ( )ˆ,t G t | t .∆Φ = − π 〈Ψ Ψr r 	 (5)

Ezúttal csak az egytest-esetet követjük. Ha m a tömeg, és 
Ψ(r) a hullámfüggvény, akkor

		 2( ) 4 ( , ),t Gm | t | .∆Φ = − π Ψr r 	 (6)

Az ilyen (Poisson-) egyenletnek a megoldása ismert:

		 2 3( ) ( , ) d
Gm

,t | t | r .
| |
− ′ ′Φ = Ψ

′−∫r r
r r

	 (7)

ami az alábbi önvonzó potenciált jelenti:

		
2

2 3( ) ( ) d
Gm

V | | r .
| |Ψ
− ′ ′= Ψ

′−∫r r
r r

	 (8)

Írjuk ezt be a szabad mozgás Schrödinger-egyenletébe:

		
2d ( )

( ) ( ) ( )
d 2

i V .
t m Ψ

 Ψ = − ∆Ψ + Ψ 
 

r
r r r



 	 (9)

Ezt nevezzük Schrödinger–Newton-egyenletnek [3]. 
Meglepődhetünk: a Vψ potenciál szerkezete azonos az 
1952-ben javasolt (1) egyenletével, ezúttal a monoton f 
függvény is egyértelműen adott.

Lehetséges volna, hogy Jánossynak igaza volt? Az 
elektronra és bármely atomi skálájú testre semmiképp; 
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kis tömegük miatt a VΨ potenciáljuk elhanyagolható. 
Mutassuk meg ezt! Ha feltesszük, hogy Ψ(r) egy a jellem-
ző szélességű sima hullámcsomag, akkor megvizsgálha-
tó, hogyan skálázódik a lineáris kinetikusenergia-tag és 
a nemlineáris gravitációs tag egymáshoz képest. Becsül-
jük meg az Ekin kinetikus és az Egrav  gravitációs önvonzási 
potenciális energia dimenzióit:

		
2

kin 2 ,E
ma




	 (10)

		
2

grav
Gm

E .a− 	 (11)

Eszerint keskeny hullámcsomagra a kinetikus tag domi-
nál, szélesedő hullámcsomagra viszont figyelembe kell 
venni az önvonzást is. Az a szélesség, ahol a két mecha-
nizmus összemérhető, így becsülhető:

		
2

0 3 .a
Gm


 	 (12)

Ez m ~ 10–26 g tömegnél (kb. tízezer elektrontömegnél) 
jelent a világegyetem méretével megegyező hullámcso-
mag-szélességet. Megállapíthatjuk tehát, hogy az elemi 
részecskék és a belőlük alkotott mikroszkopikus rend-
szerek kinetikus energiája mindig sok nagyságrenddel 
nagyobb az önvonzásnál. A (2) félklasszikus gravitá-
cióelmélet nem módosítja a mikrovilág kvantumos tör-
vényeit. Jó is, hogy ezt kaptuk, hiszen a lineáris Schrö-
dinger-egyenlet nagy pontossággal igazolt a mikrovilág 
fizikájában. A Schrödinger–Newton-egyenlet története 
viszont nem ér itt véget.

Mezoszkopikus tömegek

Amennyire irreleváns a mikrovilágban a gravitációs 
önvonzás, annyira dominánssá válik a mezoszkópiá-
ban. Ha a tömeg egy femtogramm nagyságrendű, azaz 
m ~ 10−12 g, akkor az Egrav gravitációs energia már akkor 
dominánssá válik az Ekin energia fölött, amennyiben a 
hullámfüggvény a szélessége eléri a femtométeres nagy-
ságrendet. Itt egy apró technikai problémával is szem-
besülünk. A femtogrammos tömeg már nem tekinthető 
pontszerűnek a gravitációs önvonzásban. A (6)–(8) 
egyenletek pontszerű testre vonatkoztak, most viszont 
figyelembe kell vennünk a test saját tömegeloszlását a 
saját térfogatán belül. A legegyszerűbb, ha a test egy szi-
lárd homogén R sugarú gömb. Mezoszkopikus tömeg-
nél már akkor is dominál a gravitációs önvonzás, ha a 
hullámfüggvény a kiterjedése még nagyságrendekkel 
kisebb az R méretnél. Ebben az a << R tartományban a 
VΨ potenciál (8) alakját az alábbi effektív potenciál veszi 
át:

		
2 2
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3

6
( ) ( )

5 2
Gm Gm ˆV ,

R RΨ = − + − 〈 〉r r r 	 (13)

ahol

		 2 3( ) dˆ | | r〈 〉 = Ψ∫r r r 	 (14)

a helyoperátor várható értéke. A VΨ konstans tagja el-
hagyható, így harmonikus oszcillátort idéző potenciált 
kaptunk, a Schrödinger–Newton-egyenletbe már olyan 
jelölésekkel írjuk be:

  
2

2 2d 1
( ) ) ( )

d 2 2 N
( ) ˆi m ( .
t m

ω Ψ = − ∆Ψ + − 〈 〉 Ψ 
 

r
r r r r



 	(15)

Itt

		 3/ (4 /3 ,N Gm R Gω ρ= = π 	

ezt nevezhetjük Newton-frekvenciának. (Ilyen frekven
ciával oszcillál egy kis próbatest, ha a homogén gömbbe 
fúrt szűk átlós csatornába helyezzük, értéke csak a gömb 
ρ sűrűségétől függ.) Olyan harmonikus oszcillátort kap-
tunk, aminek a rezgési centruma a hely G r̂H várható érté-
ke. Ez azt jelenti, hogy a stacionárius megoldások leol-
vashatók a harmonikus oszcillátor jól ismert stacionárius 
állapotaiból. Nézzük mindjárt az alapállapotot:

		
1 4

2
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	 (16)

Ez egy statikus lokalizált hullámcsomag – szoliton–, 
aminek az r̄ középpontja bárhol lehet. Egy exp(imvr/ℏ) 
szorzóval az állandó v sebességgel mozgó szolitonokat 
leíró megoldásokat kapjuk.

A (16) szolitonok szélességnégyzete pedig

		 2
0 2 2 (4 /3)N

a .
m m Gω ρ

= =
π

 

	 (17)

Ha m = 1 ng és ρ ~ 1 g/cm3 sűrűséggel számolunk, akkor 
a0 ~ 1 nm szélességet kapunk. Ez sokkal kisebb, mint a 
test R ~ 10 μm jellemző mérete, így a (13) közelítés felté-
tele teljesül.

Tehát a mikrovilágot elhagyva már a mezoszkopikus 
testek tömege is elég erős önvonzást ad, hogy létezzen 
stacioner lokalizált állapotuk. Ez méginkább így van, 
ha továbblépünk a makrotömegek felé. Örülünk ennek, 
mert a makrovilágban valóban minden testnek meghatá-
rozott pozíciója van. Pedig a kvantumelmélet szerint ha 
lassan is, de a hullámfüggvényüknek szét kellene folyni-
uk, hasonlóan a mikrorészecskék hullámfüggvényéhez.2

Sajnos a Schrödinger–Newton-egyenlet nem ad ele
gendő magyarázatot az izolált mezo- és makrotömegek 
meghatározott pozíciójára. A stacioner megoldások 
ugyanis lehetnek gerjesztett szolitonok is, egyre na-
gyobb a kiterjedéssel. Ez még talán belefér a makrosz-
kopikus képünkbe. De van, ami kevésbé, és ezek a két- 
és többszoliton-megoldások. Egy kétszoliton-megoldás 
lehet például ilyen:

		 0 1 0 2( ) ( )
2

| |
.

Ψ +Ψr r r r
	 (18)

2 �E nnek észlelését a makrotömegekre elkerülhetetlen környezeti za-
varó hatások – az úgynevezett dekoherencia – lehetetlenné teszik, 
de mezo- vagy nanotömegek egyre tökéletesebb laboratóriumi izo-
lációjával a jövőben vizsgálhatóvá is válhat.
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Ez két álló szoliton szuperpozíciója, és a kettejük közti 
|r̄1 − r̄2| távolság akár a test R méreténél is sokkal na-
gyobb lehet. Ez jó közelítéssel stacioner állapot lenne. 
Azért csak lenne, mert az önvonzás nemcsak a két szoli-
tonon belül hat, hanem a két szoliton között is, a klasszi-
kus gravitációs erő egymás felé kezdi gyorsítani őket. 
Még élesítve a paradoxont, a két szolitonnak kicsi, ellen-
tétes kezdősebességeket is adhatunk. Ekkor az egy szem 
m tömeg két távoli része m/2 tömegekként egymás kö-
rül kering majd egy kepleri ellipszisen. El nem kerülhető 
[4], hogy Karinthyt idézzük, aki humoreszkje végén ezt 
veti oda 1911-ben [5]: „Továbbá azt álmodtam, hogy két 
macska voltam és játszottam egymással”.

Schrödinger macskái és kizárásuk

Mint láttuk, a félklasszikus gravitációban a nagy töme-
geknek létezik lokalizált stacioner (szoliton) hullám-
függvényük, ami nem folyik szét. De nem tiltottak a 
makroszkopikus szuperpozíciók sem. Schrödinger egy 
macska élő és holt állapotának szuperpozíciójával tré
fálkozott. Ez lenne a hullámfüggvény és annak kollap-
szusa:
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ahol az r vektor a macska és a pokolgép koordinátáit je
löli. A második sor a véletlenszerű kollapszust jelöli az 
élő vagy a holt állapotra, ami a tankönyvi kvantumel-
mélet szerint csak akkor következik be, ha a makrosz-
kopikus szuperpozíciót külső eszközzel észleljük. Ez a 
bonyolult elrendezés nyilván kezelhetetlen a fizika szo-
kásos analitikus eszközeivel. A lényege a makroszkopi-
kus szuperpozíció, ezért minden más körülményt most 
elhagyva a (18) állapotot hívjuk (Schrödinger-) macska-
állapotnak, ahol az m tömeg legalább mezoszkopikusan 
nagy:
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Feltüntettük az állapot kollapszusát is. A tankönyvi 
kvantumelmélet szerint a kollapszus attól jön létre, ha 
méréssel eldöntjük, hogy a tömeg r̄1 vagy r̄2 körül van-e. 
Elhisszük ezt egy kockacukorról? A környezeti zavaró, 
például hőmérsékleti hatásoktól sosem tudnánk a gya-
korlatban annyira elszigetelni, hogy a fenti makroszko
pikus szuperpozícióba hozzuk, de az elmélet ezt nem 
zárja ki.

Szabadítsuk-e meg a elméletet a makroszkopikus 
szuperpozícióktól, a paradoxonoktól, amit a Schrödin-
ger-macskák jelentenek? Sem kísérleti tapasztalat, sem 
elméleti következtetés nem kényszerít erre. De meg
tehetjük egy kézenfekvő lépéssel – megintcsak óvatosan 
módosítva a tankönyvi kvantumelméletet az atomi világ-
nál nagyobb tömegskálákon.

A spontán kollapszus feltevése szerint a makroszko
pikus szuperpozíciók maguktól is összeomlanak, ugyan-
úgy, mintha egy mérés hatására tennék. A konkrét mo-
dellt úgy kell megválasztani, hogy a mikrovilágban a 
szuperpozíciók τ jellemző élettartama gyakorlatilag 
végtelen legyen, a mezoszkopikus világban – ahol kvan-
tumos tapasztalataink nem is voltak – lehet már érzékel-
hetően véges, a makrovilágban pedig olyan rövid legyen, 
hogy makroszkopikus változóban ne is jöhessen létre 
szuperpozíció az azonnali spontán kollapszus miatt. Lás-
suk a konstrukciót legalább a (18) típusú makroszkopikus 
szuperpozíciókra! Vegyük észre, hogy a gravitációs ön-
vonzás potenciális energiája a kezdeti szuperpozícióban 
nagyobb (jelölése Ei

G), mint a kollapszus utáni lokalizált 
állapotok bármelyikében (jelölése Ef

G). Legyen a ΔEG = 
Ei

G − Ef
G energianyereség az, ami a spontán kollapszust 

„hajtja”. A szuperpozíció átlagos élettartamát ezért így 
definiáljuk:

		 DP G .
E

τ =
∆


	 (21)

Ezt a posztulátumot tíz év különbséggel egymástól 
függetlenül javasolta a jelen szerző [4, 6] és Roger Pen
rose [7], függetlennek látszó de rokonítható indoklással 
[8]. Nézzük, mekkora lesz a (18) szuperpozíció élet
tartama! Kezdjük a kollapszus utáni állapot gravitációs 
energiájával! A Ψ0(r̄|r1) (vagy Ψ0(r|r̄2)) szoliton állapot-
ban az R sugarú homogén gömb önvonzási potenciális 
energiája Ef

G = 6Gm2/5R. A kétszoliton-szuperpozí
cióban pedig EG = 2· 6G(m/2)2/5R. Tehát a kollapszus 
energianyeresége ΔEG = 3Gm2/5R. A kollapszus átlago-
san
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5
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R
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τ = 

	 (22)

idő alatt bekövetkezik. Ez például m = 1 mg esetén a mil-
liszekundumos skálán lesz. Az 1 gramm kockacukorra 
pedig femtoszekundumos skálát kapunk, a szuperpozí-
ció összeomlik, mielőtt létrejönne. Schrödinger macs-
kája sem tud kettéválni élőre és holtra, két fél macska 
sem fog Kepler-pályán keringeni egymás körül a spon-
tán kollapszus DP-modelljében [6, 7].
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Záró gondolatok

Vonzó lenne, és nincs is kizárva, hogy a kvarkoktól a ga-
laxisokig univerzális fizikai elmélet a kvantumelmélet, 
és a régi klasszikus (nem kvantált) törvények leszármaz-
tathatók belőle megfelelő határesetekben. A feltételes 
fogalmazás nem véletlen. A kvantumelmélet nagyszerű 
egyenleteket származtat a mikrovilág jelenségeire, és 
ami a fő, a mikrovilág valóban ezeket az egyenleteket 
látszik követni. Nem úgy a kozmológiában, ahol elmélet 
és kísérlet nem járhatott kéz a kézben. Egyfelől a gravi-
táció, tehát a téridő einsteini általános relativitáselmé-
letének kvantált egyenleteit, a kvantumgravitációt máig 
nem sikerült megalkotni. Másfelől nem ismerünk olyan 
jelenségeket, amelyek egyértelműen a gravitáció (tér
időszerkezet) kvantumosságával kapcsolatosak. Ezért a 
kvantumgravitáció elméletéhez nincsenek egyértelmű 
kísérleti kapaszkodóink.

Ebben a helyzetben felvethető, hogy a kvantum
elmélet módosul, ha a mikrovilágból elindulunk a mak
rovilág felé. Nincs erre sem elméleti kényszer, sem 
kísérleti bizonyíték, pusztán egy jelzés, hogy a makro-
kozmosz és a kvantálás viszonya még nyitott, ismeret-
len. Nem véletlen, hogy az itt felvillantott Schrödinger–
Newton-egyenlet és a spontán kollapszus DP-modellje 
a tankönyvi kvantumelméletet gravitációs megfonto-
lásokkal módosítják. Történeti érdekesség, hogy ezek 
a módosítások a mezoszkopikus tömegek világában 
jósolnak új  effektusokat, miközben a gravitációt és a 
kvantálást korábban csak az extrém nagyenergiás ré-
szecskefizika és az extrém görbült téridők terrénumain 
kapcsoltuk össze. Íme lehetséges, hogy ez a kapcsolat a 
mezoszkopikus világban tartogat tanulnivalót. Abban a 

világban, ahol évtizedekig sem a kvantumos, sem a gra-
vitációs viselkedés fundamentumait nem vizsgáltuk. 
Végül az 1990-es években jött el ennek az ideje. A mezo-
tömegek kvantumos viselkedésének laboratóriumi ku-
tatását nem utolsósorban a Schrödinger-egyenlet new-
toni gravitációs módosításai inspirálták, és teszik ezt 
máig [9]. Geszti írta 2008-ban: „lessük a kísérleteket a 
senkiföldje-tömegek világából, addig is gyártjuk az el-
méleteket” [10]. Így lesz még jó ideig.
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A kauzális dinamikus háromszögelés (CDT) módszerével 
egy egész kvantumuniverzumot lehet létrehozni a számí-
tógépünkön, melynek formája és viselkedése megegyezik a 
világegyetemről alkotott képünkkel. Monte Carlo-szimu-
lációk segítségével vizsgálható a különböző kvantumterek 
téridőre gyakorolt hatása és a kozmosz fluktuáló kvan-
tumgeometriája is.

1. lord Kelvintől a kvantumgravitációig
„a dinamikai elmélet szépségét és tisztaságát, amely 
szerint a hő és a fény a mozgás egy-egy formája, jelenleg 

két felhő árnyékolja be. az első azzal az elmélettel együtt 
merült fel, amely a fényt hullámmozgásként írja le, és 
amelyet Fresnel és Thomas Young vizsgált. ez a kérdés 
így szólt: hogyan mozoghat a föld egy rugalmas szilárd 
 közegen, amely lényegében a fényáteresztő éter? a má-
sodik a Maxwell–Boltzmann-féle energiaeloszlási elv.” – 
Lord Kelvin

a „felhők” árnyékaira adott megoldások jelentősen 
megváltoztatták a világról alkotott képünket. Kiderült, 
hogy az éter nem létezik, helyette viszont a tér és az idő 
egy egységet alkot, melyet minden energiával rendelke-
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ző test képes meggörbíteni. Ennek a matematikai meg-
fogalmazása vezetett a legnagyobb testek fizikájához, 
az általános relativitáselmélethez. Nagy skálán az egész 
világegyetem tágulni látszik, és a látható anyag csak egy 
apró szelete a teljes egésznek, melyet nagyrészt a sötét 
anyag és energia tesz ki. A második probléma megoldá-
sa pedig elvezetett minket a legkisebb részecskék vilá-
gába, ahol a fizika fundamentálisan mérhetetlenné vált, 
hisz már nem lehet azt kérdezni, hogy milyen gyors és 
hol van, mert csak az egyikre kaphatunk pontos választ. 
Egyesek azt mondják, hogy a kvantummechanikát, mely 
alatt a legkisebb testek fizikáját értjük, megérteni nem, 
csak megszokni lehet.

1.1. A kvantumgravitáció szerepe

Az általános relativitáselmélet és a kvantummechanika 
ötvözéséből kapjuk meg a kvantumgravitációt. Az el-
múlt évtizedek során több rendkívül érzékeny műszert 
sikerült építenünk, melyek a legkisebb és legnagyobb 
távolságokat, energiákat pásztázzák, és több olyan fizi-
kai jelenség is létezik, amelyekre a kvantumgravitáció 
elmélete talán választ adhat. Mi történik a gravitációs 
hatásokkal, miközben az elektron a kétrés-kísérletben 
egyszerre megy át a két résen? Milyen módon formál-
ta az Univerzum anyageloszlását a kvantumgravitáció 
az első pillanatokban? Egyáltalán, mi az az Univerzum, 
volt-e eleje, vagy van-e még belőle több, más fizikai tör-
vényekkel? Elvész-e a fekete lyukakban az információ 
vagy sem? Lehetséges, hogy a sötét anyag és energia csak 
kvantumgravitációs hatás? Ezen kérdésekre a gravitáció 
kvantumelméletének tudnia kell válaszolni.

Több elmélet megjelent az elmúlt évtizedekben, 
amelyek választ ígértek a felmerült kérdésekre. A leg-
inkább ismert ezek közül a húrelmélet (string theory), 
melynek ugyan sok matematikai áttörést köszönhe-
tünk, viszont nem képes leírni egy olyan világot, amely 
hasonlít a miénkre. Az ismertebbek között van még a 
hurok-kvantumgravitáció (loop quantum gravity), mely 
bonyolult kvantumtérelméleti módszerekkel írja le a 
gravitációt mint kvantumos mezőt, és képes bizonyos 
mennyiségeket kiszámítani, állításokat tenni annak 
természetéről. Egyik ilyen előrejelzése például a fény 
sebességének frekvenciától való függése, amelynek vi-
szont a nagyenergiás asztrofizikai mérések ellentmon-
danak. Jelenleg nincs általánosan elfogadott elmélete a 
kvantumgravitációnak.

2. A kvantumgeometria megjelenése

A XX. század közepére a számítástechnikai eszközök 
fejlődése áttörést hozott számos fizikai és matematikai 
területen, és ebből a kvantumgravitáció sem maradt ki. 
Az elmúlt évtizedekben több új elmélet is született, ame-
lyeket kifejezetten nagyméretű számítógépes szimuláci-
ók és algoritmusok tettek lehetővé. Ezek közé tartozik a 
jelen munka tárgyát képező kauzális dinamikus három-
szögelés (CDT) is [1].

2.1. Mit értünk háromszögelés alatt?

A CDT matematikai alapját a Regge-kalkulus adja, ame-
lyet Tullio Regge dolgozott ki [2]. Regge újragondolta 
az általános relativitáselméletet: a metrikus tenzor (gμν) 
helyett szabályos háromszögekből felépített diszkrét so
kasággal közelítette a görbült téridőt.

A háromszög n dimenziós általánosítását szimplex-
nek nevezzük: ez két dimenzióban háromszög, három 
dimenzióban tetraéder, négy dimenzióban pedig pen-
tachoron. Az ilyen szimplexek összeillesztésével köze-
líthetők a folytonos görbült terek. A Regge-kalkulusban 
a lapos, görbület nélküli egyenlő élhosszú szimplexek 
kicsi, sima téridőszeleteket képviselnek, így alakulhat 
ki görbület. A Regge-kalkulus matematikai módszerét 
felhasználva a folytonos integrálás diszkrét összegzéssel 
helyettesíthető, így például egy adott sokaság térfogata 
nem az összes ponton való integrálással érhető el, hanem 
az n dimenziós szimplexek összeszámolásával, amelyek 
lefedik a teret. A görbület, amely az általános relativitás
elméletben a metrikus tenzor bonyolult függvénye, itt 
a szimplexek kapcsolódási struktúrájából következik. 
Mivel minden építőelem sima, lapos és egyenlő oldalú, 
a görbület kizárólag az építőelemek számosságából és 
illeszkedéséből fakad.
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1. ábra. Háromszögelt és fóliázott téridő, amely lehetővé teszi görbült 
felületek időfejlődésének közelítését
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A téridő szerkezetének diszkrét leírásában fontos 
szerepet játszik a fóliázás, azaz a téridő háromdimen
ziós térszerű szeletekre és egy időirányra történő bon-
tása (ennek reprezentációja látható az 1. ábrán). Ez 
a megközelítés az Arnowitt–Deser–Misner- (ADM) 
formalizmusból ered [3], amely jól illeszthető a CDT 
logikájába is.

2.2. Miért kauzális a CDT?

A speciális relativitáselmélet óta téridőnket Lorentz-
metrikával írjuk le, ahol az idő és tér különböző előjel-
lel járul hozzá a távolságfogalomhoz. Ezzel szemben az 
euklideszi térben minden koordináta térszerű, a távol-
ságokhoz pozitív járulékot ad. A kettő közötti átjárást 
az úgynevezett Wick-forgatás biztosítja, amely során az 
időkoordinátát a képzetes egységgel megszorozzuk, így 
az is térszerűvé válik. Ez a módszer lehetővé teszi, hogy 
a bonyolult számításokat statisztikai fizikai eszközökkel 
egyszerűbben kezeljünk.

A CDT egyik kulcseleme a kauzalitás beépítése. A fó-
liázással és a Regge-kalkulussal diszkrét téridőt tudunk 
felépíteni, amely kauzálisan háromszögelhető: a téridő-
szeletek (időszerű sorrendben egymás után következő 
háromdimenziós terek) között meghatározott kauzális 
kapcsolatok állnak fenn, melyet jól reprezentál az 1. ábra 
is. A térszerű kapcsolatot térszerű, a kauzális kapcsolatot 
pedig időszerű élekkel reprezentálhatjuk. Ekkor a CDT 
négydimenziós építőelemei olyan pentachoronok 
(2.  ábra), amelyek csúcsai két szomszédos időréteghez 
tartoznak. Minden pentachoronnak öt csúcsa van, ame-
lyek különböző felosztásban helyezkedhetnek el az idő-
szeletek között. Ez azt jelenti például, hogy a {4, 1} típusú 
pentachoron négy csúcsa az alsó (t0), egy csúcsa pedig a 
felső (t1) időréteghez tartozik; az {1,  4} típus ennek tük-
rözése az időben. Mivel háromdimenziós térfogatot a tet-
raéderek fognak közre, a  fizikai térfogat egy adott idő
szeleten a térszerű tetraéderek számával (illetve a {4, 1} 
pentachoronok számával) lesz egyenlő.

A görbületet a δ deficitszög segítségével definiáljuk, 
amelyet a szimplexek illesztési pontjai (2D-ben csú-

csok,  3D-ben élek, 4D-ben háromszögek) körül szá
molhatunk ki:

		 szimplex2 ,Nδ θ= π− ⋅ 	 (1)

ahol θ a szimplexek adott él körüli belső szöge (két di-
menzióban például θ = π/3). Így ha két dimenzióban 
Nszimplex = 6, akkor δ = 0, ami sík felületnek felel meg. 
Euklideszi térben ettől eltérő számú háromszög illesz
tésekor a szögdeficit eltér a nullától, ami nem triviális 
görbületet jelez.

A háromszögelés alacsony dimenziókban kombinato-
rikai módszerekkel is kezelhető, de négy téridő-dimen-
zió esetén jellemzően számítógépes szimulációkra van 
szükség.

2.3. Na, de hol itt a kvantum?

A kvantumtérelmélet egyik forradalmi megközelítése 
Richard Feynman nevéhez fűződik, aki bevezette a pá
lyaintegrál módszerét. Feynman szerint egy Φ(x) kvan-
tumtér fejlődése úgy írható le a legjobban, ha figyelembe 
vesszük az összes lehetséges fejlődés (téridőbeli állapot) 
Boltzman-faktorral súlyozott összegét, ahol a súlyt a 
leírandó rendszer klasszikus hatásának exponencializá-
lásával kapjuk meg. A pályaintegrált klasszikusan Z-vel 
jelöljük, és gravitáció esetén a kvantumtér a metrikus 
tenzor g(x), melynek felírható a pályaintegrálja 

		 eH [ ][ ] ,S gD g e−= ∫Z 	 (2)

ahol D [g]a mértékintegrál jele az összes lehetséges g met-
rikának a figyelembe vételével és az SEH Einstein–Hilbert 
hatással mint Boltzmann faktorral súlyozva:

		 4
eH

1
d ( 2 ),S x g R −

Γ
Λ= ∫ 	 (3) 

ahol Γ a Newton-féle gravitációs állandó, R a Ricci- 
skalár és Λ a kozmológiai állandó. Eszerint a téridő 
kvantumtérelméleti leírását úgy kapjuk meg, ha figye-
lembe vesszük a téridő összes lehetséges gemoetriai 
realizációját.

Annak ellenére, hogy az S hatásingegrál klasszikus 
mennyiség,  a pályaintegrállal való számolás kvantumos-
sá változtatja a számításokat. Ezen felül a pályaintegrál 
segítségével könnyedén elérhetővé válnak dinamikus 
rendszerek mozgásegyenletei is, mely által megkapható 
egy adott modell dinamikai leírása. A gravitáció Reg-
ge-háromszögeléssel diszkretizált pályaintegrálja a kö-
vetkező:

		 regge [ ]1
,Se

C
−∑ T

TT

	 (4)

ahol a folytonos mértékintegrál (D[g]) helyére külön
böző háromszögelésekre való CT  -vel súlyozott összegzés 
kerül, mely a T háromszögelések szimmetriacsoportjá-
nak méretével azonosítható. A diszkretizált háromszö-
gelt hatást általánosan SRegge-nek, míg a CDT hatását 
SCDT-nek jelöljük.

2. ábra. A kauzális háromszögelés négydimenziós építőelemei: {4, 1} 
(balra) és {3,  2} (jobbra) típusú pentachoronok. Ezek időbeli tükrözé-
sével megkaphatók az {1,  4} és {2,  3} típusok
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Egy adott N0 darab csúcspontból és N41 + N32 darab 
szimplexből álló háromszögelés esetén SCDT a CDT-hatás 
a következőképpen írható fel:

		 CDt 0 41 320 4 41( 6 ) ( )  S N N N N .κκ ∆ ∆= − + + + + 	 (5)

Itt κ0 a nem renormalizált (vagy „csupasz”) newtoni csa-
tolási állandó, κ4 a csupasz kozmológiai állandó, míg Δ 
az aszimmetriaparaméter, amely a tér- és időszerű élek 
hosszának arányát méri. A Δ = 0 eset az idő- és térirá-
nyok szimmetrikus kezelését jelentené.

A CDT modellje két dimenzióban analitikusan is ke-
zelhető, magasabb téridő-dimenziókban azonban csak 
számítógépes szimulációk segítségével nyerhetők konk-
rét eredmények.

2.4. Miért dinamikus a CDT?

A Monte Carlo-szimulációk alapjait a múlt század köze-
pén dolgozták ki a Rosenbluth és Teller házaspárok Ni-
cholas Metropolis vezetésével. Ezek célja, hogy egy fizikai 
rendszer egyensúlyi állapotát vizsgálják, és statisztikai 
mintavétellel információt nyerjenek annak viselkedésé-
ről. A módszer lényege, hogy a rendszert sorozatos lépé-
sekkel kissé megváltoztatva új konfigurációkhoz jutunk, 
amelyek egy adott eloszlás (jelen esetben az exp{–SCDT} 
Boltzmann-súly) szerint érvényesülnek.

A CDT esetében a dinamika azt jelenti, hogy a há-
romszögelés maga, azaz a téridő diszkrét szerkezete vál-
tozik az iterációk során. A lépések a háromszögelés loká-
lis módosításait jelentik, erről példát a 3. ábra szemléltet 
három dimenzióban.

A CDT esetén az állapot egy adott számú szimplex 
egy adott szomszédsági relációval, és egy lépés ezt meg-
változtatja, mely lehet egy átló behúzása vagy egy vertex 
hozzáadása vagy elvétele a rendszerből. A cél az, hogy 

a hatás mint Boltzmann-súly segítségével a geometriai 
lépéseket ismételgetve az állapotösszeg lehetséges geo-
metriáiról gyűjtsünk elegendően nagy statisztikát. Ha ez 
megvan, akkor ezzel különböző megfigyelhető mennyi-
ségek, mint például az időszeletek térfogatát vagy egy- 
illetve kétpont-korrelációs mennyiségek várható értékét 
lehet számolni.

3. A CDT eredményei
A kvantumtérelméletek diszkrét téridőn való numeri-
kus vizsgálatát Kenneth G. Wilson vezette be 1974-ben 
[4], megalapozva a rácstérelméletet, amely különösen az 
erős kölcsönhatás, azaz a kvantum-színdinamika (QCD) 
esetében vált sikeressé. Az ilyen számítások jellemzően 
hatalmas számítógépes rendszereket igényelnek, és ered-
ményeik kísérleti ellenőrzése csak nagyenergiás labo
ratóriumokban, például a CERN-ben lehetséges (ilyen 
eredmény a proton és neutron tömegkülönbsége [5]).

Ebben a kontextusban a kauzális dinamikus három-
szögelés (CDT) nem egy alternatív kvantumgravitációs 
elmélet, hanem az általános relativitás statisztikus, kvan-
tumszinten diszkretizált megközelítése. A tiszta CDT 
modell nem tartalmaz extra paramétereket az általános 
relativitáson túl, de lehetőséget nyújt alternatív elméle-
tek vagy anyagmezők, például mértékmezők, fermionok 
vagy skalármezők téridővel való kölcsönhatásának vizs-
gálatára is.

A numerikus szimulációk során a kezdeti rácsstruk-
túra, mint például a topológia (gömb, tórusz vagy egyéb 
egzotikus peremfeltétel) és a szimplexek dimenziója, 
nem határozza meg egyértelműen a létrejövő kvantum-
geometria effektív dimenzióját vagy topológiáját. Ezt 
jól szemlélteti az alábbi példa: képzeljünk el egy halom 
[1 × 1   × 1] méretű legóelemet. Bár minden blokk három-
dimenziós, ha ezeket ezer rétegben egymásra helyezzük, 
az így létrejövő struktúra [1 × 1   × 1000] alakú lesz, amely 
viselkedésében inkább egy egydimenziós rendszerhez 
hasonlít. Ennek megfelelően effektív dimenziója deff = 1.

3.1. A világegyetem geometriái

A geometriák, melyeket a szimplexek összeragasztásá-
ból kaphatunk, jelentősen különbözhetnek egymástól, 
egyesek fraktálszerűek, mások pedig lehetnek akár 
egész egyszerűek, és tulajdonságaikat a modell κ0, κ4, 
Δ csatolási paraméterei határozzák meg. A Monte Car-
lo-szimulációk során ezek lesznek a bemeneti para
méterek, ezek határozzák meg a modell fázisterét  
hasonlóan ahhoz, ahogy a víz különböző halmazálla-
potait a hőmérséklet és a nyomás. A CDT-fázisdiagram 
(4. ábra) négy elkülönülő geometriát tartalmazó régió
ra oszlik.

A szimuláció célja, hogy azonosítson egy fizikailag 
releváns fázist, amelyben a kvantumtéridő viselkedé-
se megfelel a megfigyelhető univerzumunknak. A CDT 
modell esetében ez a C avagy de Sitter-fázis lesz.

3. ábra. Monte Carlo-lépések fóliázással három dimenzióban. Piros 
pötty jelöli a tetraéderek t + 1, kék a t – 1 és fekete a t síkon lévő 
pontjait
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3.2. Az Univerzum alakja

A CDT egyik legfontosabb eredménye, hogy a C fázis 
téridő-geometriája jól közelíti a klasszikus de Sitter-
világegyetemet, a mi univerzumunk nagyskálás geo
metriáját.

Az időszeletek N(t) térfogatát a rajtuk található pen
tachoronok (és egyben tetraéderek) számának várható 
értékével azonosítjuk, hiszen a fizikai térfogat csak a 
{4, 1} típusú pentachoronok t-szeleten lévő tetraéderei-
ből ered (mely pontosan megegyezik az {1,  4}-ek számá-
val).

A szimulált térfogat-idő profilok skálázása után (5. 
ábra) ezek jól illeszkednek Hartle és Hawking mini
superspace modelljéhez [6], amely a téridő egyetlen vál-
tozóra, a sugárra redukált alakját írja le. Az eredmények 
alapján a szimulált kvantumtéridő térfogata, görbülete 
és tágulása mind megerősítik, hogy a kialakuló univer-
zum négydimenziós, és a klasszikus kozmológiai model-
lekhez hasonló viselkedést mutat.

3.3. Effektív fraktáldimenzió

Egy diffúziós folyamattal (pl. véletlen bolyongás) meg-
mérhetjük egy adott tér effektív dimenzióját, amely a 
CDT minden fázisában más eredményt ad. Egy vélet-

len bolyongás kezdőpontba való visszatérésének való-
színűségéből levezethetjük az úgynevezett dS spektrális 
dimenziót, amely nagy távolságokon a téridő dimenzió
jához tart, míg kis távolságokon képes a geometria frak-
táltermészetét megmutatni (6. ábra).

A de Sitter-fázisban ez nagy távolságokon dS = 4, míg 
kis távolságok esetén dS = 1,5–2 között változik. Ez a 
megfigyelés eltér attól, ahogy egy lapos-klasszikus téridő 
viselkedik, ami azt is jelenti, hogy nagy energiákra, illet-
ve a korai Univerzum fizikájára ez a jóslat hatással lehet, 
ez által tesztelhető a CDT módszer.

A keletkezett téridő fraktálszerű szerkezete miatt a 
távolságok megmérése és a szomszédsági reláció köze-
li pontok között nem egyértelmű. Lehetnek pontok a 
téridőben, amelyek közeliek a rácson, de a rács nem va-
lóságos, a fizikát ki kell abból hámozni, amit egy mező 
bevezetésével is elérhetünk.

3.4. A CDT kozmikus hálózata

A leképezés egy matematikai eszköz, amely lehetővé 
teszi, hogy egy bonyolult struktúrát egyszerűbb, job-
ban kezelhető térben ábrázoljunk. Egy ilyen leképezés 
például egy négydimenziós, görbült Riemann-sokaság, 
M (mint amilyen a CDT-ben előálló kvantumtéridő) 
és egy sík, kompakt sokaság, N között történhet. Az 
utóbbi gyakran egy tórusz, T  , ahol minden irány pe
riodikus: azaz a tér végtelen ismétlődésként értelmez-
hető.

A leképezést egy skalármező, ϕ(x) valósítja meg, 
amely a sokaság minden pontjához egy valós számot 
rendel. Fizikai példája ennek a Higgs-mező, de itt inkább 
egy matematikai eszközként használjuk. A tóruszra való 
leképezés során minden mezőértéket a [–0,5; 0,5] inter-
vallumra korlátozunk, ahol a határon való átlépéskor a 
mező egy δ értékkel ugrik, ezt egy b jelölésű határmátrix 
kódolja. Így biztosított a folytonosság a periodikus hatá-
rokon.

A leképezéshez tartozó diszkrét hatás a skalármező-
re az alábbi formában írható fel:

5. ábra. A szimulált kvantumgeometria-rendszermérettel normalizált, 
egymásra skálázott térfogat-idő profilja jól illeszkedik a négydimenziós 
táguló de Sitter-világegyetemhez

6. ábra. A spektrális dimenzió (dS) futása a diffúziós lépések (σ) függvé-
nyében a de Sitter fázisban. A különböző színű egymásra skálázott gör-
bék különböző κ0 és Δ értékeknek felelnek meg

4. ábra. A CDT modell fázisdiagramja: A (fa gráfok), B (szingularitás), 
CB (dimenzióredukált) és C (fizikailag releváns de Sitter-fázis)
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2 2 2( ) 2 ,i j ij

i , j

S b L b bφ φ φ δ φ φ δφ δ= − − = − +∑ 	 (6)

ahol i, j a háromszögelés szimplexeit indexelik, bij a pe
riodikus határokból származó korrekciókat tartalmazza, 
δ a mezőugrás mértéke, míg L a Laplace-operátor diszk-
retizált változata. A három tag közül az első a mező si-
maságára törekszik, a második a határfeltételeket veszi 
figyelembe, a harmadik pedig csak egy állandó, amely a 
szimuláció szempontjából irreleváns.

A Monte Carlo-szimuláció során a mező úgy fejlődik, 
hogy minimalizálja ezt a hatást. Mivel L pozitív definit, 
a minimális hatású konfiguráció egyértelműen meghatá-
rozható az alábbi egyenletrendszer megoldásával:

		 1L b.φ δ−= 	 (7)

Ez megadja azt a leképezést, amely a téridő szimplexei-
nek belső viszonyait a lehető legkisebb torzítással jeleníti 
meg a tóruszon.

Ha minden téridőirányhoz (x, y, z, t) külön skalár
mezőt rendelünk, négy független mezőértéket (ϕx , ϕy , 
ϕz , ϕt ) kapunk minden szimplexhez. Ezek egy négy
dimenziós harmonikus koordinátarendszert alkotnak, 
melyek segítségével a CDT-ben előálló, koordináták 
nélküli kvantumgeometriák vizuálisan ábrázolhatóvá 
válnak.

A 7. ábrán egy ilyen térkép látható: minden pont egy 
szimplexet jelöl a mezőkoordináták terében. A színezés 
a ϕt értéke szerint történik, ahol a negatív értékek kék, 
a pozitívak piros színűek. A megjelenő sűrűsödések, fila-
mentumok és üres terek nem anyagi struktúrák, hanem 
a kvantumtéridő térfogatelem-sűrűségeinek lenyomatai. 
Meglepő módon ezek a struktúrák emlékeztetnek a meg-

figyelt világegyetem nagyskálás hálózatos szerkezeté-
re, habár itt pusztán a téridő kvantumszerkezetének 
kivetüléseiről van szó.

4. Kölcsönhatás az anyaggal
A CDT háromszögelt rácsának geometriája a benne ta-
lálható anyagmezők paramétereinek változtatásával ala-
kítható. A kölcsönhatás mibenlétét az anyagmezőhöz 
tartozó hatás írja le. A (6) egyenletben ismertetett hatás 
például csak a közvetlen egymás mellett lévő szimplexek-
re van hatással: megvizsgálva a szomszédos szimplexben 
lévő mező értékét a Monte Carlo-szimulációk által ja-
vasolt lépések elfogadási valószínűsége változni fog, így 
tudja a CDT-ben az anyag meggörbíteni a teret, míg a 
görbület vonzza vagy taszítja az anyagot.

4.1. Skalármező a CDT-ben

Ha a (6) egyenletben bemutatott hatást figyelembe ves�-
szük a Monte Carlo-szimuláció során, akkor a mező is 
részt vesz az evolúcióban: a mező eloszlása hatással van 
arra, hogy a szimuláció mely háromszögeléseket részesíti 
előnyben. A δ paraméter szabályozza a mező hatását: kis 
δ esetén a mező gyenge, és alig módosítja a geometriát; 
nagy δ esetén viszont a mező dominánssá válik, és erő-
sen befolyásolja a kialakuló téridőstruktúrát.

A 8. ábrán látható, hogyan hat a skalármező a téridő szer-
kezetére. Kis δ értéknél a mező nem tör meg lényeges 
geometriai szimmetriákat: a leképezés során egy toroi-
dális szerkezet jelenik meg. Ahogy δ nő, a mező eloszlása 
már jelentős dinamikai szerepet tölt be, és az így kialaku-
ló téridő topológiája már nem egyezik meg az eredetié-

7. ábra. A négydimenziós mezőkoordináták háromdimenziós (ϕx , ϕy , ϕz ) 
projekciója, ahol a szín a ϕt mező értékét jelöli

8. ábra. A felső két ábra a ϕx , ϕy  mezőprojekcióban ábrázolja a téridőt: 
balra a tisztán geometrikus (anyag nélküli) eset, jobbra pedig a nagy 
δ-val futtatott szimuláció eredménye, ahol a skalármező jelenléte to-
pológiai változást idéz elő. Alul a fluktuáló kvantumgeometria effektív 
topológiai átalakulása van szemléltetve. Forrás: [7]
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vel. Ezt a változást a geometria topológiai fázisátalakulá-
sának is tekinthetjük, amely jól látható a mezőprojekciók 
megváltozásán. A szimuláció tehát lehetőséget ad arra, 
hogy anyag jelenlétében vizsgáljuk a téridő kvantum-
szerkezetének módosulását.

4.2. Topológiai töltés Yang–Mills mértékmezők 
esetén

A standard modellhez tartozó komplexebb kvantum
mezők beillesztése a CDT-geometriákba új technikai 
kihívásokat jelent. Míg a hagyományos rácstérelméle-
ti módszerek periodikus, szabályos rácsokra épülnek, 
a CDT rendezetlen, sztochasztikus háromszögelésein 
ezek nem alkalmazhatók közvetlenül. Ugyanakkor új 
módszerekkel lehetőség nyílik mértékmezők (például 
gluonok) és fermionok (például kvarkok) diszkretizált 
reprezentációjára. A mértékmezők egyik kulcsfontos
ságú jellemzője a topológiai töltés, amely többek között 
az erős kölcsönhatás egyik kvantumszáma, és amely nem 
triviális térszerkezetek jelenlétére utal [8].

A topológiai töltés sűrűségként jelenik meg a tér
időben, amelyet a háromszögelés egyes szimplexeiben 
külön-külön is mérhetünk. Az így kapott sűrűségi el-
oszlás összehangolható a korábban ismertetett skalár
mező-leképezéssel, így a mezőkoordináta-rendszer se-
gítségével vizualizálhatóvá válik a topológiai struktúra. 

A 9. ábra egy ilyen vizualizációt mutat, ahol a ten-
gelyeket a ϕx , ϕy  skalármezők és a háromszögelés t 
fóliázási paramétere adják meg, a ϕz koordináta elha
gyásával. Az ábrán egy instantonszerű szerkezet figyel-
hető meg: egy lokális sűrűsödés, amely stabil topológiai 
töltésként értelmezhető.

A fóliázási idő diszkrét jellege, amely a CDT-szimu-
lációk diszkretizációs mellékhatása, azaz rácsartefaktu-
ma, jól megfigyelhető az időirány menti rétegeződésben 
a 9. ábrán. Ennek ellenére a t koordináta felhasználása 
rendkívül hasznos, mivel lehetőséget nyújt annak be
mutatására, hogy a sűrűsödés nemcsak a mezőkoordi
náta-térben, hanem a háromszögelés által meghatá-
rozott kvantumgeometriában is megjelenik. Ez újabb 
kapcsolatot teremt a geometriai és a mezőelméleti rep-
rezentáció között, és megerősíti a mezőleképezés mód-
szerének érvényességét.

5. Konklúzió
A CDT egy technikai eszköz a gravitáció kvantumel-
méletének vizsgálatára. Ahogy a rácstérelmélet sem egy 
különálló elmélet, hanem az erős kölcsönhatás számító-
gépes megfigyelésére jött létre, úgy a CDT eredményeit 
sem egy különálló elméletként kell kezelni, hanem a gra-
vitáció rácstérelméleteként. A modell a newtoni és koz-
mológiai konstansok különböző értékére különböző tu-
lajdonságú téridőket mutat be, melyek között található 
olyan paraméterérték, melyre a mi világunkkal meg-
egyező négydimenziós táguló világegyetemet kapunk. 
A numerikus szimulációk segítségével képesek vagyunk 
a kapott struktúrák nagy- és kisskálás fraktálszerkezetét 
vizsgálni, illetve meghatározni annak effektív dimenzió-
ját és topológiáját. Mivel a rács maga a téridő, a rács tu-
lajdonságaiból megkapjuk a téridő viselkedését, és a rács 
pontjaira (építőelemeire) még anyagi mezőket is tehe-
tünk, melyek képesek ezen tulajdonságokat megváltoz-
tatni. Hamarosan eljutunk odáig, hogy a teljes standard 
modellt képesek leszünk a dinamikusan változó téridőt 
reprezentáló rácson szimulálni.
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A Zitterbewegung története

A Zitterbewegung (a továbbiakban röviden ZB) azok 
közé szakkifejezések közé tartozik, amelyek a kvantum
elmélet daliás ifjúkorában, az 1920–30-as években szü-
lettek, amikor még a világfordító cikkek nagy része 
német nyelven, főleg a Zeitschrift für Physik hasábjain 
jelent meg. Ma már ez a folyóirat is angol nyelvű publiká
ciókat közöl, de a ZB neve – néhány társához hasonlóan, 
mint pl. Bremsstrahlung (fékezési sugárzás), Eigenvektor 
(sajátvektor) – a fizikusok szóhasználatában megmaradt 
a német eredetinél.

A ZB szó szerinti jelentése „reszkető mozgás” (Bewe
gung = mozgás, zittern = reszketni, dideregni). Ezt a fur-
csa jelenséget Erwin Schrödinger (1887–1961) fedezte 
fel (papíron, számításokkal) 1930-ban, amikor a Dirac-
egyenlet megoldásait tanulmányozta [1, 2]. Paul Dirac 
(1902–1984) Schrödinger nem relativisztikus hullám
egyenletét házasította össze a speciális relativitáselmélet 
követelményeivel. A Dirac-egyenlet csodálatos módon 
leírta az elektron spinjét és a hozzá kapcsolódó mágne-
ses momentumot, bónuszként pedig megjósolta az anti
részecskék létezését is.

Schrödinger a legegyszerűbb esetet vizsgálta: a Dirac- 
egyenlet által leírt részecske szabad, erőmentes mozgá-
sát. Galilei és Newton óta tudjuk, hogy a magára hagyott 
(környezetével kölcsönhatásban nem álló, erőmentes, 
röviden: szabad) részecske egyenes vonalú, állandó se-
bességű mozgást végez. Ezt a közismert állítást nem vál-
toztatta meg a 20. század két világrengető fizikai forra-
dalma, a speciális relativitáselmélet és a kvantumelmélet 
sem. A leírás fizikai, szemléleti és matematikai kerete 
megváltozott, de az eredmény változatlan maradt: mind 
a speciális relativitáselméletben, mind a nem relativisz-
tikus kvantummechanikában könnyen levezethető, 
hogy a szabad részecske egyenes vonalban, állandó se-
bességgel mozog (a kvantumelméletben ez az állítás a 
helyoperátor várható értékére vonatkozik). Kézenfekvő-

nek tűnt a következtetés, hogy hasonló marad a helyzet 
e két elmélet majdani egyesítése során is. Ezért okozott 
nagy meglepetést – először Schrödingernek, aztán a fizi-
kus-közvéleménynek –, hogy ez a következtetés téves: a 
Dirac-egyenletből levezethető, hogy a szabad részecske 
állandó sebességű mozgására rárakódik az impulzus irá-
nyára merőleges periodikus „reszkető” mozgás. Mintha a 
Dirac-részecske egy dugóhúzó alakú görbe (hélix) men-
tén mozogna (1. ábra).

Egy m tömegű szabad részecskét E energiája és p 
impulzusvektora jellemez, ezek között a relativitáselmé-
letben fennáll az E2 = c2 p2 + m2c4 összefüggés, ahol c a 
vákuumbeli fénysebesség. A speciális relativitáselmélet 
szerint e részecske sebessége V = c2 p/E, ennek nagysága 
mindig kisebb c-nél. A dugóhúzón lezajló mozgás átla-
gaként a menetemelkedés figyelembe vételével kiadódik 
az elvárt V „drift-” (sodródási) sebesség. A részecske im-
pulzusa a driftsebességgel arányos, és állandó.

1. ábra. A Zitterbewegung klasszikus elképzelése: a dugóhúzó alakú 
görbén végbemenő v pillanatnyi sebességű mozgás időbeli átlagaként 
kialakul a klasszikusan elvárt V driftsebesség
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A sebesség és az impulzus közötti egyszerű, az ele-
mi fizikában megszokott p = mv alakú kapcsolat már a 
klasszikus mechanika Lagrange- és Hamilton-formaliz-
musában is megbomlik. Ilyen durva eltérésre azonban 
senki sem számított. A Dirac-elméletben az impulzus 
komponenseit egymással kommutáló operátorok írják 
le, míg a sebességoperátor komponensei egymással nem 
kommutáló operátorok – a helyoperátor ezek alapján 
kiszámított várható értéke pedig a dugóhúzó alakú pá-
lyát írja le.

Egy viszonylag egyszerűnek látszó probléma ilyen 
nem várt megoldása természetesen fizikai magyaráza-
tot, interpretációt igényel, össze kell illeszteni más fizi
kai ismeretekkel – emellett persze meg kell próbálni 
kísérletileg igazolni. Az utóbbi feladat reménytelen volta 
hamar kiderült. Schrödinger megoldásában a dugóhúzó 
sugara, azaz a ZB amplitúdója az elektron ún. Comp-
ton-hullámhossza nagyságrendjébe esik: λC = ℏ/‌mc 
(ahol ℏ a Planck-állandó, m a vizsgált részecske tömege, 
c a fénysebesség) – ez az elektron esetében 4·10–13 m, 
azaz 0,4 femtométer, ami 137-szer kisebb a hidrogéna-
tom méreténél. A rezgés frekvenciája pedig (ω = c/λC, 
ami a 1021 Hz nagyságrendbe esik. A mozgás amplitúdója 
túl kicsi, frekvenciája túl nagy – a jelenség kísérletileg 
detektálhatatlan.

Megpezsdült viszont az elméletalkotók fantáziája. 
Először azt gondolták, hogy az elektronnak ez a mik- 
roméretű „belső rezgése” hozza létre a spin jelenségét. 
Később egy egész iskola alakult, amely évtizedeken át 
dolgozott az elektron külső és belső állapotterét, külső 
és belső mozgását egységesen leíró algebrai formalizmu-
son. A ZB-t kapcsolatba hozták a Mach-elvvel és számos 
más egzotikus fizikai elképzeléssel is. Ezeket a furcsa 
ötleket részletesen ismerteti a [6] dolgozat történeti be-
vezetője. Végül azonban az észlelhetetlen ZB kiszorult a 
kvantumelmélet főáramából, és megmaradt a relativisz-
tikus kvantummechanika furcsaságának – ily módon 
szerepel sok példatárban, pl. [13].

Lényegesen megváltozott a helyzet a kétezres évek 
elején. Ekkor a kondenzált anyagokkal foglalkozó kí-
sérleti és elméleti fizikusok számos új nanofizikai és 
spintronikai rendszerrel találkoztak, és egyszerűsített 
elméleti modelleket állítottak fel e rendszerek elektron-
szerkezetének és mozgásainak tanulmányozására. Geim 
és Novoselov például 2004-ben fedezte fel a grafént, a 
korábban elképzelhetetlen kétdimenziós anyagot, ame-
lyet szénatomok egyetlen hexagonális szerkezetű rétege 
alkot. (A grafén és más spintronikai rendszerek érdekes 
új tulajdonságairól részletes ismertetést nyújt a [12] dol-
gozat.) Az új rendszerek elméleti vizsgálata során derült 
ki, hogy jó néhány ilyen modellben az elektronok moz-
gása hasonlít a Schrödinger által leírt Zitterbewegung-
hoz.

Ez nagy meglepetést okozott, hiszen a szilárd anyag-
ban mozgó elektronok nagyon messze állnak a szabad 
relativisztikus részecskéktől. A grafénban például az 
elektronok tipikus sebessége mintegy háromszázszor 

kisebb a vákuumbeli fénysebességnél. Viszont érdekes 
módon a ZB amplitúdója sokkal nagyobbnak, frekven
ciája sokkal kisebbnek adódott, mint az eredeti Schrö-
dinger-féle esetben – már-már közel áll a kísérleti kimu-
tathatóság határaihoz.

A következő években egyre több egzotikus nanofizi
kai és spintronikai rendszerben mutatták ki (elméleti-
leg) a ZB-hez hasonló mozgás jelenlétét. Nyitva maradt 
a kérdés, hogy ennek a szilárd anyagokban felfedezett 
jelenségnek mi köze van az eredeti Schrödinger-féle 
Zitterbewegunghoz.

A kérdést e cikk szerzőinek 2006–2010 között meg
jelent munkái [6–9] tisztázták a Zitterbewegung álta
lános elméletének kidolgozásával. Kiderült, hogy a 
ZB-nek semmi köze sem a spinhez, sem a relativitáselmé
lethez. A ZB univerzális kvantumos mozgásforma, ami 
bizonyos fizikai és matematikai feltételek mellett minden 
kvantumrendszerben fellép. Puszta véletlen, hogy az 
emberiség a relativisztikus szabad elektron Dirac-egyen-
letével kapcsolatban találkozott első ízben ezekkel a ma-
tematikai feltételekkel.

Az alábbiakban ismertetjük a ZB fennállásának felté-
teleit, és néhány példát mutatunk nanofizikai megjelené-
sére.

A Zitterbewegung feltételei
Eredményeink szerint Zitterbewegung lép fel egy kvan-
tumos rendszerben, ha a) a rendszer extra belső sza-
badsági fokokkal rendelkezik, ezért leírására többkom-
ponensű hullámfüggvény szükséges, b) a rendszer – és 
ezzel a dinamikáját leíró Hamilton-operátor – invariáns 
a térbeli eltolásokra nézve, c) a transzlációs mozgáshoz 
tartozó impulzus és az extra szabadsági fokok között 
kölcsönhatás, „általánosított spin–pálya-csatolás” áll fenn. 
Vizsgáljuk meg egyenként ezeknek a feltételeknek a fizi-
kai jelentését!

Többkomponensű hullámfüggvény

A kvantumelméletben a fizikai rendszerek állapotainak 
halmaza komplex lineáris teret, ún. Hilbert-teret alkot, 
amely a legtöbb esetben végtelen dimenziós. Ennek az 
absztrakt állapottérnek az elemeit igen kényelmes függ-
vényekkel reprezentálni – ebben az esetben a fizikai 
mennyiségeknek megfelelő operátorok e függvényekre 
ható differenciáloperátorok lesznek.

Már a kvantumelmélet korai éveiben kiderült, hogy a 
fenti leírás sokszor a legegyszerűbb kvantumos objektu-
mok (pl. az elektron) esetében sem elegendő: a részecske 
kielégítő jellemzésére, bizonyos extra szabadsági fokok 
figyelembe vételére többkomponensű hullámfüggvényre 
van szükség. Matematikai nyelven: a rendszer Hilbert-
tere egy végtelen dimenziós függvénytér és egy véges di-
menziós komplex vektortér tenzori szorzata. A hullám-
függvényt úgy foghatjuk fel, mint egy függvényekből álló 
véges sok komponensű vektort. Az ilyen állapotvektorra 
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kétféle operátor (tenzori szorzata) hat: egyrészt a meg-
szokott differenciáloperátorok, másrészt véges négyze-
tes mátrixok.

Ilyen kétkomponensű hullámfüggvényt először Pauli 
vezetett be az elektron spinjével kapcsolatos extra sza-
badsági fok leírására. A relativisztikus elektron Dirac-
elméletében már négykomponensű hullámfüggvény 
szerepel: az egyik kettősség itt is a spint írja le, a másik 
a  részecske energiájának pozitív vagy negatív voltával 
kapcsolatos. Bonyolultabb rendszerek esetén kevésbé 
szemléletes extra szabadsági fokok is előfordulnak: a 
grafén elektronja például az ún. „völgy” szabadsági fok-
kal rendelkezik, ezt írja le a hullámfüggvény két kom-
ponense. A szilárdtestfizika más közelítő modelljeiben 
általában az elektron számára elérhető megengedett 
energiasávokat jelenti az extra szabadsági fok.

Szabad és kváziszabad részecske – 
impulzus és kváziimpulzus

A klasszikus mechanikából tudjuk, hogy az erőmentes, 
szabad mozgást végző objektum lendülete (impulzusa) 
állandó. Emmy Noether 1918-as tétele szerint az impul-
zus megmaradása a rendszer térbeli eltolhatóságából, 
transzlációs invarianciájából következik. Ez az általános 
tétel mind a klasszikus, mind a kvantumos fizikában 
fennáll. A kvantumelméletben az állandó impulzusú ré-
szecskének rögzített frekvenciájú (így energiájú) és hul-
lámhosszú síkhullám felel meg.

A Dirac-féle szabad elektron esetében az eltolási szim-
metria nyilvánvalóan érvényes, hiszen az üres térben 
semmilyen kitüntetett pozíció nem létezik. Más a helyzet 
azonban a szilárdtestekben mozgó elektronok esetében. 
Ezek nem erőmentes mozgást végeznek, hiszen a kris-
tályrácsot alkotó ionok periodikus elektromos potenci-
álterében mozognak.

A kvantumfizikusok ezt a problémát már az 1920-as 
években megoldották. Ekkor dolgozták ki a kondenzált 
anyagok sávszerkezetének elméletét, és ennek kapcsán 
megmutatták, hogy a kristályrácsban terjedő elektron-
hullám is tekinthető egy impulzusjellegű paraméter által 
jellemzett hullámnak – csak éppen egy ilyen impulzus
értékhez több lehetséges energiaszint tartozik, valamint 
a hullám impulzusa és energiája között a szabad részecs-
ke esetétől eltérő, jelentősen bonyolultabb összefüggés 
áll fenn. A szabad részecske hagyományos impulzusától 
való megkülönböztetés céljából az ebben az elméletben 
szereplő mennyiséget kváziimpulzusnak nevezik. A 
rácsban mozgó elektront ezért kváziszabadnak nevez-
hetjük. A kondenzált anyagok elektronrendszerének 
sávelméletéről például Sólyom Jenő tankönyvéből [16] 
tájékozódhatunk.

A ZB matematikai leírása során a legtöbb esetben a 
kváziimpulzus a hagyományos impulzushoz hasonlóan 
folytonos változónak tekinthető, ezért a kétféle impul-
zusfogalom megkülönböztetésére nincs szükség – a to-
vábbiakban csak az „impulzus” kifejezést használjuk. 

Így a fizikailag nagyon különböző két eset, a vákuum-
ban mozgó szabad Dirac-elektron és a szilárdtest-fizikai 
modellek kváziszabad részecskéi analóg módon tárgyal-
hatók.

Heisenberg-kép

Ezt a leírásmódot Werner Heisenberg vezette be 1925 
nyarán írt, ősszel megjelent cikkében [3], amelyet hama-
rosan követett Born és Jordan második [4], majd a három 
szerző harmadik cikke [5] – ez a cikksorozat alapozta 
meg a kvantumelmélet mátrixmechanikai felépítését. 
(A nevezetes három cikk magyarul is olvasható a „Kvan-
tummechanika” c. cikkgyűjteményben, Györgyi Géza 
fordításában [15].) A fizikusok matematikai ismeretei
hez sokkal közelebb álló, ezért gyorsabban elfogadott 
Schrödinger-féle hullámmechanika első publikációja 
csak néhány hónappal később, 1926 januárjában jelent 
meg. Némileg önkényesen Heisenberg első cikkéhez kö-
tik a kvantumelmélet születését, ezért is ünnepli a Fizi-
kai Szemle jelen, 2025 nyári száma az elmélet századik 
születésnapját.

A kvantummechanika Schrödinger-féle megfogal-
mazásában a hullámfüggvény időbeli változását keres-
sük, miközben a fizikai mennyiségeket reprezentáló 
operátorok állandóak. Ezzel egyenértékű az ún. Hei-
senberg-kép: itt az állapotvektor állandó (megegyezik a 
kezdeti pillanatban érvényes állapottal), viszont az ope-
rátorok változnak az időben.

Ha a vizsgált rendszernek van klasszikus megfelelő-
je (mint a sokat vizsgált harmonikus oszcillátornak és 
a hidrogénatomnak), akkor az operátorokra vonatkozó 
mozgásegyenletek megegyeznek a klasszikus mechani-
kából ismert egyenletekkel – ezért az ismert megoldá-
sokat is azonnal felhasználhatjuk. Izgalmas új szituáció 
áll elő azonban akkor, ha a rendszernek nincs klasszi-
kus megfelelője. Ez a helyzet a többkomponensű hul-
lámfüggvénnyel leírandó rendszerek esetében: az extra 
(spin-, völgy- stb.) szabadsági fokoknak nincs klasszikus 
analógiájuk. Ilyenkor az operátorok mozgásegyenlete-
inek megoldása érdekes új jelenségek leírásához vezet-
het. A ZB esetében ezért a Heisenberg-kép használatát 
részesítjük előnyben: így a kezdőfeltételek okozta eset-
legességektől eltekintve a jelenség lényegére koncentrál-
hatunk.

Ha a vizsgált rendszer eltolásinvariáns, akkor az 
időfejlődést leíró Ĥ Hamilton-operátor nem függhet az 
x̂ helyoperátortól, csak a p̂ impulzusoperátortól: Ĥ = 
Ĥ(p̂). Ebben az esetben a rendszer állapottere felbom-
lik a p̂ impulzusoperátor folytonosan sok p sajátértéké-
hez tartozó alterek direkt összegére. Ha vizsgálatunkat 
egy ilyen altérre koncentráljuk, ott a p̂ impulzusoperá-
tor egyszerűen a p sajátértékével helyettesíthető. Ezért 
továbbiakban az impulzus komponensei nem operáto-
rok, hanem puszta számok lesznek. Ebben az altérben 
a Hamilton-operátor egy véges H(p) hermitikus mát-
rixszal adható meg, amely az extra szabadsági fok véges 
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dimenziós vektorterén hat. E mátrix sajátértékei adják 
meg a rendszer p impulzusértékhez tartozó lehetséges 
energiaértékeit. A végtelen dimenziós Hilbert-téren való 
nehéz manipulációk helyett tehát egy jól ismert, egy-
szerű matematikai problémával, egy véges mátrix saját
értékeinek meghatározásával kell foglalkoznunk.

Általánosított spin-pálya kölcsönhatás

Az egyes p impulzusértékhez tartozó H(p) effektív Ha
milton-operátor természetesen függ az impulzustól. Ha 
a mátrix diagonális, akkor a főátlóban álló értékek köz-
vetlenül megadják az operátor En(p) sajátértékeit. Ér-
dekesebb az az eset, amikor a H(p) mátrixnak nem dia
gonális komponensei is vannak. Ez azt jelenti, hogy az 
extra szabadsági fokok közti kapcsolat függ az impulzus 
p értékétől: az impulzus jellemezte transzlációs mozgás 
kölcsönhat a rendszer extra szabadsági fokaival. Ilyen 
kapcsolatot először az atomhéjak szerkezetének tanul-
mányozásakor találtak a kutatók: az elektron pályamoz-
gásához és spinjéhez is tartozik mágneses momentum, 
ezek relatív beállása pedig befolyásolja a rendszer ener-
giáját. Ezt a kapcsolatot nevezték el spin-pálya kölcsön-
hatásnak. Ezért a tetszőleges, többkomponensű hul-
lámfüggvénnyel leírható transzlációinvariáns rendszer 
Hamilton-operátorának nem diagonális komponensei 
által képviselt jelenségre „általánosított spin-pálya köl-
csönhatásként” hivatkozunk.

A helyoperátor mozgása a Heisenberg- 
képben

Schrödinger nyomán az x̂ helyoperátor Heisenberg-
képbeli mozgását szeretnénk meghatározni. A Schrö
dinger- és a Heisenberg-kép közti áttérést a Ĝ(t) = 
exp{–(i/ℏ) Ĥ(p)t} uniter időfejlesztő operátor és inverze 
(egyben adjungáltja) segítségével lehet megadni (lásd 
pl. [14]):

		 x̂(t) = Ĝ(t)–1 x̂(0) Ĝ(t) ,	

ahol x̂(0) a helyoperátor Schrödinger-képbeli alakja. Im-
pulzusreprezentációban ez egyszerűen x̂(0) = iℏ (∂/∂p), 
azaz egy szorzótényezőtől eltekintve az impulzusvektor 
szerinti gradiens (lásd [14]).

Ez a gradiensoperátor a Ĝ(t) operátorra hat, amely 
H(p)-hoz hasonlóan impulzusfüggő komponensekből 
álló mátrix. Hogyan lehet ennek a gradiensét általános 
esetben meghatározni? Itt jön segítségünkre a lineáris 
algebra egyik leghasznosabb (sajnos nem eléggé közis-
mert) eredménye, a mátrixfüggvények alaptétele.

Írjuk fel az adott p impulzusértékhez tartozó H(p) 
operátort H(p) = ∑a Ea(p) Qa(p) alakban, ahol az Ea valós 
számok a H(p) operátor sajátértékei, a Qa mátrixok pedig 
a sajátalterekre vetítő projektorok, természetesen mind
egyik függ a p impulzustól. Ekkor a Ĝ(t) időfejlesztő ope-
rátor így írható fel:
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Az impulzus szerint deriváló x̂(0) a Leibniz-szabály 
szerint egyszer az Ek(p) energia-sajátértékeket, egyszer 
pedig a Qk(p) projektorokat deriválja. Az eredményt 
beszorozva az időfejlesztő operátor ugyancsak projek
torok szerint felbontott inverzével és kihasználva a pro-
jektorok ortogonalitását megkapjuk végeredményün-
ket, a helyoperátor Heisenberg-képbeli mozgását leíró 
képletet (a számolás részletei a [6] dolgozatban és a [9] 
cikkben olvashatók):
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mátrixok az ún. Zitterbewegung-együtthatók (ezek a p 
szerinti gradiensképzés miatt egyben hármasvektorok 
is), az ωab = (Ea – Eb)/ℏ értékek pedig a lebegési frekven-
ciák.

Ha a helyoperátor időtől függő várható értéke iránt 
érdeklődünk, a fenti kifejezést jobbról és balról meg kell 
szoroznunk a rendszer kezdőállapotára jellemző több-
komponensű |Ψ(0)H vektorral: x̄(t) = GΨ(0)|x̂(t)|Ψ(0)H.

Értelmezés
A rendszer Heisenberg-képbeli, időtől függő helyope-
rátora a következő tagokból tevődik össze: az első tag a 
Schrödinger-képbeli állandó helyoperátor, a második 
egy állandó eltolásvektor. A harmadik tag arányos a t 
idővel, így ez írja le a rendszer állandó sebességű moz-
gását. A sebességvektorhoz az egyes sajátértékekhez 
tartozó módusok a különböző Va(p) parciális sebesség
operátorokkal járulnak hozzá. Ezek nemcsak eltérő 
nagyságúak, hanem különböző irányúak is lehetnek. 
Ezért a kezdőállapottól függően a helyoperátor várható 
értéke különböző irányú és sebességű mozgást végezhet.

A legérdekesebb természetesen a helyoperátor képle-
tének utolsó tagja. Ez írja le a voltaképpeni ZB-t, az azo-
nos impulzushoz tartozó különböző energia-sajátértékek 
közti különbségekhez tartozó lebegési frekvenciákkal 
megvalósuló, a Zab(p) vektor iránya szerinti polarizá
ciójú „reszkető mozgást”.

A Schrödinger-féle ZB esetétől és az elsőként megis-
mert nanofizikai rendszerektől eltérően az általános eset-
ben a ZB-t nem csak egyetlen frekvencia jellemzi: az azo-
nos impulzushoz tartozó különböző energiaértékek közti 
minden különbségi frekvencia fellép. Monofrekvenciás 
rezgőmozgás csak nagyon egyszerű, kétsávos rendszer, 
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illeve speciális szimmetriafeltételek fennállása esetén va-
lósul meg.

Az elsőként megismert esetektől eltérően a ZB-rez-
gések mozgásiránya sem mindig merőleges a driftsebes
ségre és az impulzusra. Több általunk vizsgált nanofizikai 
rendszerben felléptek a transzverzális irányú rezgések 
mellett longitudinális és ferde irányú rezgési módusok, 
sőt ezek keverékei is.

Az 1. ábrán bemutatott, a Schrödinger-féle ZB-n 
alapuló régi elképzelés tehát jelentősen leegyszerűsíti a 
kvantumrendszerekben fellépő Zitterbewegung való-
di komplexitását. Ez a mozgás általában sok különböző 
frekvenciájú és irányú rezgés szuperpozíciójaként való-
sul meg, mint azt a későbbi ábrákon bemutatjuk.

Látjuk, hogy a ZB a fentebb részletezett feltételek 
fennállása mellett szükségszerűen fellép, és matemati-
kai leírása teljes általánosságban megadható. A ZB le-
begési jelenség: oka az azonos impulzusértékhez, ám 
különböző energiaértékhez tartozó energiaszintek köz-
ti kapcsolat, frekvenciáit az energiaszintek távolsága ha-
tározza meg.

Érdekességként megemlítjük, hogy a ZB lebegési je-
lenségként történt azonosítása lehetővé tette a ZB-hez 
hasonló mozgásformák felismerését egészen más jellegű 
(klasszikus, nem kvantumos), ám ugyancsak több kom-
ponensű hullámfüggvénnyel leírható rendszerekben is. 
Ilyen pl. a kristályos közegben terjedő rugalmas hullá-
mok esete – itt az egyik polarizációs módusban terjedő 
hullámcsomag „árnyéka” megjelenik a többi módusban 
(lásd a 2010. évi Ortvay Fizikai Feladatmegoldó Verseny 
17. feladatát [17]). A jelenség távolabbi rokona fellép a 
folytonos impulzusváltozó helyett diszkrét, spinjellegű 
változóval jellemezhető kvantumos rendszerekben is 
(lásd a 2025. évi Ortvay-verseny 18. feladatát [18]).

Klasszikus és nanofizikai alkalmazások
A szakirodalomban korábban vizsgált esetek az imént 
bemutatott általános képlet speciális eseteként adódnak. 
Az eredeti Schrödinger-féle ZB esetében a Dirac-egyen-
let, a grafén és más nanofizikai rendszerek esetében pe-
dig az anyag legegyszerűbb közelítő leírása összesen két 
energiaszinttel számolt, ezért ezek között csak egyetlen 
lebegési frekvencia lépett fel. Egy másik érdekes eset a [7] 
cikkünkben tárgyalt kvázispin esete – ekkor a rendszer-
nek sok energiaszintje van, de ezek egyforma távolság-
ban vannak egymástól, és algebrai okból csak a szomszé-
dos szintek közti ZB-együtthatók különböznek nullától. 
Ezért az összes fellépő átmeneti frekvencia egybeesik, 
a rendszer mozgása egyetlen ZB-frekvenciával leírható.

Egyik idézett cikkünkben [7] a nanofizikai szakiro-
dalomban szereplő számos rendszerre korábban (sok-
kal bonyolultabb módon) kiszámított ZB-jelenséget 
sikerült a fenti általános formulába történő egyszerű be
helyettesítéssel reprodukálnunk, nemegyszer az eredeti 
szerzők hibáit is kijavítva. A cikkben táblázatos áttekin-
tés található a vizsgált rendszerekről (egy- és kétrétegű 

grafén, nehéz lyukak, Cooper-párok stb.). Egy későbbi 
cikkben pedig újabb, a szakirodalomban nem szereplő 
rendszerek (Luttinger- és Rashba–Dresselhaus-modell) 
esetében is kimutattuk a ZB felléptét – ezek több ener-
giaszintes, ezért több ZB-frekvenciával jellemezhető 
rendszerek voltak.

Igen érdekes, hogy az utóbbi, az Rashba–Dresselhaus- 
modell együtthatóinak speciális kombinációja esetén az 
összes ZB-együttható nullával lett egyenlő. Ezt egy spe-
ciális szimmetria okozza: e paraméterkombináció ese-
tén a Qa projektorok nem függnek az impulzustól, ezért 
a Zab együtthatókban szereplő derivált nulla lesz. Mivel 
a modell szerint e paraméterek egyike külső elektromos 
potenciál alkalmazásával hangolható, felmerül a ZB ve-
zérlésének lehetősége is.

A mozgás képe
Az x̂(t) helyoperátor egy p-től függő mátrix, amit ter
mészetesen nem lehet lerajzolni. Ábrázolható viszont 
a  helyoperátor x̄(t) = GΨ(0)|x̂(t)|Ψ(0)H várható értéke, 
megfelelően választott |Ψ(0)H kezdőállapot esetén. En-
nek vizsgálatát végezte el 2009-ben diákunk, Széchenyi 
Gábor tudományos diákköri dolgozatában [11]. Ebben 
számos érdekes ábrán mutatta be a ZB-mozgást végző ré-
szecske helyzetének várható értékét. Alább ebből a dol-
gozatból idézünk fel néhány ábrát, a szerző engedélyével.

ZB a kétrétegű grafénban

A korábban már említett grafén kétrétegű változata 
szénatomok hatszögrácsának két síkrétegéből áll, a ré-
tegeket a hatszögek élén hatónál gyengébb kötés tartja 
össze. A rendszer érdekes fizikai tulajdonságainak rész-
letes leírása a [12] disszertációban olvasható.

A kétrétegű grafén effektív Hamilton-operátora a p 
impulzustól függő 4 × 4-es mátrixokkal reprezentálható. 
Ennek megfelelően minden p impulzusértékhez négy 
Ek(p) energiaérték tartozik. Ezek között összesen 6 át
menet lehetséges, de az energiasávok szerkezete miatt 
csak négy különböző lebegési frekvencia lép fel, mert 
két-két frekvenciaérték egybeesik. A kétrétegű grafén-
ban ezért négy ZB-módus valósul meg, közülük egy 
longitudinális, azaz az impulzussal párhuzamos irányú 
elmozdulással jár, míg a három további módus transz
verzális, azaz az impulzusra merőleges, ám különböző 
frekvenciájú rezgést jelent. Az x̂(t) helyoperátor pontos 
alakja a [6] disszertációban, a [11] dolgozatban és a [9] 
cikkben található meg.

A kétrétegű grafénban fellépő ZB imént vázolt gaz-
dag struktúrája igen bonyolult mozgásokat tesz lehető-
vé. Egy ilyen mozgás képe látható a 2. ábrán. A p impul-
zusvektor az ábra x tengelye irányába mutat. Ha a 
helyoperátort egy rögzített impulzusértékhez tartozó 
négy módus szuperpozíciójából indítjuk, akkor a hely
operátor várható értéke a longitudinális és transzverzá-
lis módusok összetételéből adódó pályát írja le az (x, y) 
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síkon, miközben megvalósul az impulzusvektor irányá-
ba mutató lassú drift is.

Megtehetjük azt is, hogy a kezdőállapotot külön
böző p impulzusértékekhez tartozó alterek állapot
vektoraiból rakjuk össze, pl. Gauss-görbe alakú hullám-
csomag formájában. Ekkor a Va(p) parciális sebességek 
impulzusfüggése miatt a hullámcsomag szétfolyik, a 
különböző módusokhoz tartozó komponensek más 
irányba és más sebességgel mozognak, ezért egy idő 
után megszűnik a köztük levő térbeli átfedés, és a 
ZB,  azaz az energiaszintek közti lebegés exponenciá
lisan lecseng. Egy ilyen eset figyelhető meg a 3. ábrán, 
amely az egyrétegű grafénban fellépő ZB lecsengését 
mutatja.

A fenti tipikus esettel szemben azonban vannak olyan 
rendszerek, amelyekben a Hamilton-operátor speciális 
alakja miatt két vagy több parciális sebesség egybeesik, 
a hullámcsomag egyes komponensei együtt mozognak, 
ezért a tartósan fennmarad köztük az interferencia. Ez a 
„ZB-tartóshullám” jelensége. A kétrétegű grafénben ez a 
speciális eset áll elő, ugyanis két módus között az átme-
neti frekvencia az impulzustól függetlenül állandó, ezért 
a két parciális sebesség azonos. A 4. ábrán megfigyel
hető, hogy a többi módus exponenciális lecsengése után 
a speciális frekvenciájú „tartóshullám” hosszabb távon 
fennmarad.

A ZB és a transzportjelenségek
Hogyan lehetne ténylegesen észlelni a ZB jelenségét? Bár 
a szilárdtestekben és nanorendszerekben megvalósuló 
ZB amplitúdója több nagyságrenddel nagyobb, frekven-
ciája pedig hasonlóképpen kisebb az eredeti, Schrödin-
ger-féle ZB-hez képest, a közvetlen kísérleti ellenőrzés 
továbbra sem lehetséges. Legfőképpen azért, mert az 
idézett számítások egyetlen részecske mozgására vonat-
koznak, míg szilárdtestfizika által vizsgált rendszerekben 
nem egyetlen elektron mozog, hanem rengeteg egymás-
sal kölcsönható elektron kollektív mozgása okozza a 
transzportjelenségeket, pl. az elektromos vezetést.

Paradox módon éppen ez teszi lehetővé a tovább
lépést. A szilárdtestfizikának ugyanis már évtizedek óta 
jól bevált matematikai módszerei vannak arra, hogyan 
vezesse le az egyetlen elektront leíró Hamilton-operá-
tor alapján a rendszer makroszkopikusan is észlelhető 
fizikai mennyiségeit – pl. a frekvenciafüggő elektromos 
vezetőképességét, optikai tulajdonságait, mágneses 
szuszceptibilitását. E bonyolult számítások első közelí-
téseként jól felhasználhatók az egyetlen elektron moz-
gására vonatkozó elmélet eredményei. A témáról szóló 
legutóbbi cikkünkben [10] azt vizsgáltuk, miként jelenik 
meg ebben a közelítésben a rendszer „ZB-hajlandósága” 
a makroszkopikus transzportegyütthatókban. Meglepő 
módon azt találtuk, hogy az elektromos vezetőképesség 
és az ezzel kapcsolatos topológiai jellegű paraméterek 
(Berry-görbület, Chern-szám) formuláiban ugyanazok 
a Zab együtthatók bukkannak fel, mint az egyetlen elekt-
ron helyoperátorára vonatkozó számolásokban. Ez arra 
a következtetésre vezet, hogy bár egy-egy elektron ese-
tén a Zitterbewegung észlelése reménytelen, ez a jelen-
ségkör mégis megjelenik a vizsgált Hamilton-operáto-
rokkal leírható modellek reális eredetijének kísérletileg 
vizsgálható tulajdonságaiban.

Mint említettük, egyes modellekben elméleti lehe-
tőséget találtunk a ZB-jelenség elektromos potenciállal 
való vezérlésére. Ez reményt ébreszt arra, hogy e rend-
szerek transzportjellemzői finomhangolhatók, manipu-
lálhatók lehetnek. Erre pedig a nanofizika, spintronika 
és a rájuk épülő majdani technológia következő fejlődési 
fázisában nagy szükség lehet.

2. ábra. Az elektron helyoperátora várható értékének mozgása a két
rétegű grafénban (Széchenyi Gábor TDK-dolgozatából)

3. ábra. Lecsengő amplitúdójú ZB az egyrétegű grafénban: a helyope-
rátor egyik komponensének időfüggése (Széchenyi Gábor TDK-dol
gozatából)

4. ábra. Nem lecsengő ZB („ZB-tartóshullám”) a kétrétegű grafénban: 
a helyoperátor egyik komponensének időfüggése (Széchenyi Gábor 
TDK-dolgozatából)



Összefoglalás

A Schrödinger által felfedezett Zitterbewegung nem a 
relativisztikus kvantummechanika furcsasága, hanem a 
többkomponensű hullámfüggvénnyel leírható szabad és 
kváziszabad kvantumrendszerekben fellépő általános 
jelenség. Megjelenik a modern sziládtestfizika által ta-
nulmányozott számos rendszer egyszerűsített többsávos 
modelljében. Bár egyedi részecskéken közvetlenül nem 
tanulmányozható, a ZB jelensége manifesztálódik az 
elektromos vezetőképesség és más ténylegesen mérhető 
fizikai mennyiségek viselkedésében.
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alapú, optikai elvű véletlenszám-ge nerálás 
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Bevezetés

tom Stoppard „rosencrantz és Guildenstern halott” 
című műve azzal a jelenettel kezdődik, hogy a két fősze-
replő fej vagy írás játékot játszik, Guildenstern folyama-
tosan fejet dob, és rosencrantz egymás után nyolcvan-
ötször elnyeri barátja érmét. nagyon valószínűtlennek 
tűnik egy ilyen sorozat, holott ha a fej és írás dobásának  

valószínűsége egyenlő, akkor ez a sorozat is épp akkora 
eséllyel fordul elő, mint bármely másik. vajon hogyan 
lehet eldönteni, hogy egy véletlen sorozat valóban tel-
jesen véletlenszerű (ami nem jelenti azt, hogy a fej és 
írás do básának gyakorisága egyenlő)? egyáltalán, mi-
kor tekinthető egy sorozat véletlennek? Ha véletlen 
számokra van szükségünk, milyen módszert érdemes 
választani annak érdekében, hogy véletlen számsoro-
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zatot kapjunk? Nem biztos, hogy Guildenstern minden 
alkalommal ugyanúgy dobta fel a pénzérmét, ahogy az 
sem, hogy valamilyen egyéb külső hatás nem befolyá-
solta az érme földet érését. Ezért a pénzfeldobást nem 
fogadhatjuk el megbízható módszernek véletlen soroza-
tok előállítására.

A technika fejlődésével kínálkozott a lehetőség, 
hogy számítógép állítson elő valamilyen algoritmussal 
véletlen számokat. Igen ám, de a számítógépes algorit-
musok determinisztikusak, azaz ha egy bizonyos kez-
dőállapotból indítjuk őket, akkor mindig ugyanaz lesz 
az eredmény (különben a számítógép megbízhatatlan 
lenne). Ez azonban még nem zárja ki azt, hogy algorit-
mussal jó minőségű álvéletlen – tehát determinisztikus, 
de statisztikai mutatóit tekintve véletlenszerű – soroza-
tot állítsunk elő. A következő módszer az egyik legegy-
szerűbb eljárás:

xi = (a1 xi–1 + … + ak xi–k)  mod m,

ahol az ak együtthatók relatív prímek, melyekre telje-
sül, hogy |ak| < m, a mod m pedig a moduló művelet, 
azaz az m-mel való osztás maradéka. A fenti rekurzió 
szükségszerűen véges számú lépés után visszatér a ki-
indulási állapotba. Ezt a lépésszámot a generátor peri-
ódushosszának nevezzük, melynek maximális értéke a 
tárgyalt módszerre u = mk–1. Ennek eléréséhez m-nek 
prímszámnak kell lennie, valamint az együtthatóknak 
ki kell elégíteni néhány további feltételt.

Az álvéletlen számsorozatok minőségének tesztelé
sére számos módszert kidolgoztak. Az egyenletességet 
például az ún. diszkrepanciával lehet jellemezni: ez azt 
fejezi ki, hogy a [0, 1) tartományon generált véletlen 
számokból alkotott N dimenziós vektorok az egység
oldalú N dimenziós hiperkockát mennyire egyenlete-
sen töltik ki. Az egyenletesség mellett fontos jellemző 
még a számsorozaton belül fellépő hosszú távú korre-
lációk megjelenése, illetve ezek hiánya. Számos sta-

tisztikus tesztcsomagot dolgoztak ki a véletlen szám-
sorozatok minősítésére, ilyen például a DIEHARD [1], 
vagy az amerikai NIST SP 800-22 [2]. Ezen túlmenő-
en vannak hivatalos tanúsítványt kibocsátó cégek is. 
A tanúsítványokra szüksége van az ipar különböző 
szereplőinek, például a játékautomatákat gyártó cé-
geknek.

Az álvéletlen számsorok jól használhatók olyan szi-
mulációkban, ahol véletlen bemenő adatokra van szük-
ség. Ezekre a legismertebb példa a különféle Monte 
Carlo-eljárások halmaza. Felhasználás szempontjából 
nagy előnye a determinisztikus algoritmussal előállí-
tott számsoroknak, hogy velük egy futtatás tetszőleges 
számban, ugyanazokkal a tesztadatokkal megismétel
hető.

A számos előnyös tulajdonság mellett van egy nagy 
hátránya az 1950–1970-es években kifejlesztett deter-
minisztikus algoritmusoknak: az előállított számsoro-
kat mintavételezve elvileg visszafejthető, hogy milyen 
kezdőállapotból indultak, ezáltal pedig meghatároz-
hatóak a további elemek is. Kritikus kriptográfiai al-
kalmazásokban ez megengedhetetlen biztonsági rést 
jelent, ezért ilyen helyzetekben módosított vagy más 
elven működő algoritmusokra van szükség. Az egyik 
lehetséges irány az ún. kriptográfiailag biztonságos ál-
véletlenszám-generátoroké: ezek olyan algoritmusokon 
alapulnak, melyek lehetetlenné teszik, hogy klasszikus 
számítógéppel megjósolják a következő biteket, még 
úgy is, hogy az összes korábbi bitet ismerik. Ez azt je-
lenti, hogy a bitek számának növekedésével polinomi-
álisnál magasabb rendben (például exponenciálisan) nő 
az időszükséglet a következő álvéletlen bit meghatáro-
zásához. Ez a megoldás azon alapul, hogy bizonyítottan 
(vagy legalábbis jól megalapozott sejtés alapján) nem 
lehetséges hatékonyabb algoritmust találni a véletlen 
számsorozat visszafejtésére. Azonban a polinomiális-
rendű biztonság nem garantálja önmagában, hogy a jövő 
kvantumszámítógépeivel nem lehet megjósolni egy 
véletlen bitsorozat részleges ismeretével a következő 
biteket. Az álvéletlenszám-generátorok kriptográfiai 
biztonságossága tovább növelhető, ha a kiindulási érté-
keket gyakran váltogatják, s az egy fizikai véletlenszám-
generátorból származik [4]. Így kerülnek előtérbe a fizi-
kai véletlenszám-generátorok.

A fizikai véletlenszám-generátorok működési elve 
azon alapul, hogy a természetben számos folyamat létezik, 
melynek kimenetelét nem tudjuk pontosan megjósolni. 
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Makroszkopikus rendszerek esetében a jelenségek álta-
lában a klasszikus fizika keretein belül értelmezhetők. 
Sokrészecskés rendszereket a statisztikus fizika mód-
szereivel jellemzünk, emiatt számos mérhető tulajdon-
ság véletlen eloszlást mutat. A Lavarand vagy Wall of 
Entropy [3] egy lávalámpákkal borított fal, a lávalám-
pákban megjelenő véletlen mintázatból határozzák meg 
az álvéletlenszám-generátor kezdő paramétereit. Máso-
dik példánk a sörétzaj, melyet megfigyeltek elektromos 
áramban és nagyon gyenge fény esetében is. Az utób-
biról később részletesen írunk. Ennek a jelenségnek a 
hátterében az áll, hogy diszkrét részecskék véletlen idő-
közökkel követik egymást, és alacsony fluxus esetén ez 
számottevő ingadozást eredményez az időegység alatt 
detektálható részecskeszámban, azaz az elektromos 
áramerősségben vagy fényintenzitásban. Utolsó példánk 
ebben a szakaszban a modern személyi számítógépek-
ben implementált hardveres véletlenszám-generátor: 
a Linux operációs rendszer /dev/random fájlját olvasva 
egy olyan véletlen bájtsorozatot kapunk, melyet az ope-
rációs rendszer folyamatosan generál a gépbe beépített 
hardvereszközök időben változó paramétereiből.

Mikroszkopikus méretekben már nem a klasszikus 
mechanika, elektrodinamika stb. törvényei érvényesül-
nek, hanem a kvantummechanikáéi. Ebben központi 
szerepet játszik a véletlen. A kvantumrendszerek dina-
mikáját leíró Schrödinger-egyenlet valószínűségi amp-
litúdók időfejlődését határozza meg. A kvantumrend-
szeren mérést végezve határozott értéket kapunk, de a 
kísérletet újra elvégezve már más eredmény jöhet ki. A 
lehetséges eredmények valószínűségi eloszlást mutat-
nak; ez egy elemi tulajdonság, a kvantumos rendszerek 
sajátossága. Ezt kihasználva lehet kriptográfiailag biz-
tonságos véletlenszám-generátorokat tervezni és meg-
valósítani. Ezek a kvantumos véletlenszám-generátorok 
(quantum random number generators, QRNG), melyek 

jelen tudásunk alapján a kriptográfiailag legbiztonságo-
sabb véletlenségforrások.

A mérendő kvantumrendszer sokféle lehet, az első 
QRNG-k például radioaktivitás detektálásán alapultak, 
mára azonban gyakorlatilag egyeduralkodónak tekint-
hetők az optikai elvű kvantumos véletlenszám-gene-
rátorok [4]. Az ID Quantique az egyik piacvezető cég 
a QRNG-gyártásban: optikai elvű QRNG-rendszerüket 
olyan kis méretű csipbe sikerült besűríteni, mely egy 
okostelefonba is beépíthető [5] (1. ábra). Ez köszönhető 
egyrészt annak, hogy a fényforrások stabilan, időben 
fenntarthatóan bocsátják ki fotonok sokaságát, tehát 
nagy sebességű véletlenszám-generálást tesznek lehe-
tővé, másrészt pedig az optikai távközlés széles körű 
elterjedésének, mely elérhetővé tett relatíve olcsó, tech-
nikailag fejlett fényforrásokat, detektorokat és egyéb 
passzív és aktív optikai eszközöket. A fénynek többféle 
mérhető tulajdonsága van: léteznek nyalábosztós, fázis
zajt mérő, detektált fotonokat számláló, erősített spon-
tán emissziót használó stb. QRNG-megoldások.

Az algoritmusalapú, klasszikus fizikai és kvan-
tummechanikai elven működő véletlenszám-generá-
torok összehasonlítása szempontjából lényeges para-
méter még a véletlen bitsorozat generálási sebessége. 
Általánosságban elmondható, hogy az algoritmikus 
véletlenszám-generátorok a leggyorsabbak, a mai kor-
szerű számítógépeken a Gb/s ráta átlagosnak nevezhető. 
A klasszikus fizikai és kvantummechanikai elven műkö-
dők lassabbak. A már korábban említett ID Quantique 
Quantis termékcsaládjának tagjai 100 kb/s és néhány tíz 
Mb/s között mozgó sebességgel rendelkeznek. Az ala-
csonyabb ráta érthető, hiszen nemcsak a fizikai folya-
mat, hanem a rendelkezésre álló elektronikai eszközök 
sebessége is korlátozza az időegység alatt generálható 
bitek számát. Ugyanakkor folyamatosan jelennek meg 
újabb kvantummechanikai véletlenszámgenerátor-el-
rendezésről szóló publikációk, melyek több Gb/s vélet-
lenbit-rátára képesek.

Saját eredmények
A számos megvalósítási lehetőséget figyelembe véve 
felmerül a kérdés: mi alapján döntsünk egyik vagy má-
sik fizikai architektúra mellett? Lehetséges valamely 
teljesítménymetrikára maximalizálni, például az elér-
hető bitgenerálási rátára. Azonban a kutatás-fejlesz-
tés szempontjáből előnyös olyan megoldást keresni, 
amely, bár nem feltétlenül veszi fel a versenyt a legjobb 
teljesítményű generátorokkal, működését tekintve 
jól modellezhető, a folyamat klasszikus és kvantumos 
komponensei egyszerűen szétválaszthatóak,1 ezáltal a 
véletlenség kvantumfizikai eredete jól leírható és nyo-
mon követhető.

1 �I tt „klasszikus” alatt olyan jelenségeket értünk, amelyeknél a kvan-
tumos jelleg és működés a részt vevő részecskék mennyiségéből 
fakadóan már nehezen elemezhető, mint például az elektromos el-
lenállások termikus zaja.

1. ábra. Az ID Quantique cég Quantis csipjei. A négyzetrácson a kockák 
élei körülbelül 5 mm hosszúak (Forrás: ID Quantique)
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Az utóbbi választásra szolgálnak példaként azok az 
eszközök, melyek detektálják egy fényforrás által ki
bocsátott fotonokat, majd a fotondetekciók közt eltelt 
időközök véletlenségét használják a véletlenszám-ge-
nerálás alapjául. Ezen generátorokat a szakirodalom 
beérkezési időn alapuló (time-of-arrival) QRNG-knek 
hívja. A leggyakrabban alkalmazott fényforrások fél-
vezető lézerek, azaz lézerdiódák, mert a kibocsátott 
koherens fény jól karakterizálható, valamint jó köze-
lítéssel Poisson-fotonstatisztikájú. Mivel félvezetők, 
gyártásuk kiforrott, kis méretük és az optikai távközlés-
ben betöltött szerepük, elterjedtségük révén könnyen 
és viszonylag olcsón hozzáférhetőek. A fényforrásból 
származó fotonokat általában egyfoton-detektorral 
(például fotoelektron-sokszorozóval, egyfoton-lavina-
diódával vagy szupravezető nanohuzalos detektorral) 
lehet észlelni. A detektorok hatékonysága elérheti a 
80–90%-ot, ezért a fényt rendszerint erősen csillapítani 
szükséges – a telítődést elkerülendő és a detektor védel-
me érdekében.

Nem szükségszerű, hogy a véletlen időközönként 
érkező fotonokat lézer állítsa elő, azok termikus fény
forrásból is származhatnak. A termikus fényforrások 
fotonstatisztikája a koherens fénnyel szemben szuper-
Poisson-jellegű, mely azt jelenti, hogy gyakran egyszer
re több foton lép ki az eszközből – ez a csomósodás 
(bunching) jelensége. Azonban a csillapítók okozta 
Bernoulli-törléseknek,2 illetve a detektorrendszer holt
idejének köszönhetően a mért fotoelektron-statisztika 
a  gyakorlatban jól közelíti a Poisson-eloszlást. Holtidő 
alatt azt a rövid időtartamot értjük, amely minden de-
tektálás után fellép, és az ezen időszakon belül érkező 
további fotonokra a detektor érzéketlen. Belátható te-
hát, hogy amennyiben kellően nagy csillapítást iktatunk 
a fényforrás és az érzékelő közé, félvezető lézerek he-
lyett akár fénykibocsátó diódákat, LED-eket is alkal-
mazhatunk a véletlenszám-generátor fotonforrásaként.

Képzeljük el azt, hogy az így megalkotott QRNG 
ideálisan működik, a fényforrás Poisson-fotonstatiszti-
kával bocsát ki fotonokat. Meg lehet mutatni, hogy ek-
kor a két egymást követő fotondetektálás között eltelt T 
véletlen idő exponenciális eloszlást követ:

Pr (T < t ) = 1 – e–λ t,

ahol λ a detektorra érkező fotonok átlagos rátája [1/s]-
ban mérve, mely tartalmazza a csillapításból és a detek-
tor nem egységnyi hatásfokából származó veszteséget.

A fotondetektálások időkülönbségeként kapott szám
értékek ugyan véletlenszerűek és függetlenek, de közel 
sem egyenletes eloszlásúak, márpedig kriptográfiai te-
rületen ez az elvárás, ugyanis az egyenletes eloszlásnak 
maximális az entrópiája – a meglepetéstartalma –, ez
által ennek a kimenetelét a legnehezebb megjósolni. 
Továbbá, mivel informatikai és távközlési egységeink bi

2 �A  csillapítást a csillapító telítődése alatt modellezhetjük úgy, mint az 
egyes fotonok egymástól független törlését vagy megtartását a folya-
matban p, ill. 1 – p valószínűséggel, egy Bernoulli-eloszlás szerint.

náris számrendszerben dolgoznak, ugyancsak célszerű, 
ha a véletlenszám-generátorunk egyenletes eloszlású 
bitsorozatokat bocsát ki. Az entrópia információelméleti 
definíciója Claude Shannontól származik:

2logx x
x X

H p p ,
∈

= −∑

ahol X a szimbólumok halmaza (pl. {0, 1}, de lehet hos�-
szabb bitsorozat is), px pedig egy adott szimbólum elő-
fordulási valószínűsége. Véletlenszám-generálás esetén 
általában az ennél szigorúbb

2max log x
x X

H p H∞
∈

= − ≤

min-entrópiát használjuk az eloszlás karakterizálására. 
A két entrópia akkor vesz fel maximális (és egyenlő) ér-
téket, ha valemennyi szimbólum azonos valószínűségű. 
Ez általában nem teljesül, ezért a nyers adatsorból ún. 
extraktor – egy matematikai transzformáció – alkalma-
zásával nyerünk véletlen bitsorozatot.

Visszatérve az általunk megvalósított kvantumalapú 
véletlenszám-generátorhoz, találjunk hát egy módszert, 
ami a mért időintervallumokhoz egyenletes eloszlású bi-
teket rendel! Štipčević és Rogina 2007-es cikkükben [6] 
írtak le egy metódust, melynek a lényege a következő: 
mérjünk meg két egymást követő, fotonok beérkezése 
közti időintervallumot, majd hasonlítsuk őket össze. Ha 
az elsőt mértük hosszabbnak, rendeljünk a kimenethez 
egy „0” bitet, ha a másodikat, akkor pedig egy „1”-est. 
Amennyiben a lézerfény teljesítménye, ezáltal a beérke-
ző fotonráta időben állandónak tekinthető, akkor a két 
időtartamot leíró valószínűségi változók függetlenek és 
azonos eloszlásúak; ebből fakadóan pedig az összehason-
lításból származó különbségi változó szimmetrikus lesz, 
tehát a nullások és egyesek valószínűsége megegyezik. 
Le kell kezelnünk azonban még az utolsó fennmaradó 
lehetőséget is: ha a két időtartamot egyforma hosszú-
nak mérjük – bármilyen kis valószínűségű legyen is ez 
–, akkor a szimmetria megőrzése érdekében nem ren-
delünk bitet a kimenethez. Ez természetesen csökkenti 
a hatékonyságunkat, azonban az így kapott módszer ro-
busztus, jól ellenáll a bitgenerálás idejéhez képest jóval 
nagyobb időskálán történő hőmérsékleti teljesítmény
ingadozásoknak.

Ez volt a legelső QRNG alapelve, melyet megvaló
sítottunk a BME Hálózati Rendszerek és Szolgáltatások 
Tanszékének Mobil Kommunikáció és Kvantumtech
nológiák Laboratóriumában, s az eszköz a mai na-
pig üzemel. Az eszköz fényképe a 2. ábrán látható. A 
QRNG-k további kutatásában két irányba indultunk el. 
Egyrészt finomítottuk a mögöttes fizikai rendszer le-
író modelljét, amellyel olyan problémákra is megoldást 
találtunk, amelyek nagyobb fotonráták esetén már a 
statisztikai tesztek által kimutathatóan eltorzították az 
ideális véletlenszerűségre jellemző statisztikai tulaj
donságokat. Másrészt pedig újabb matematikai mód
szereket kezdtünk kidolgozni annak érdekében, hogy 
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a  bitgenerálás hatásfoka (az egy mérési eredményhez 
rendelt bitek átlagos száma), és ezáltal remélhetőleg 
a sebesség is megnövekedjen az alapötlethez képest. 
Mindezt igyekeztünk úgy kivitelezni, hogy az eredeti 
fizikai architektúrát ne kelljen nagymértékben meg-
változtatni hozzá – legfeljebb stabilabb fényteljesít-
mény-kontrollt építettünk be.3

Az extraktorok implementálásán túl pontosabb ma-
tematikai modellezést tűztünk ki célul, mivel az imént 
bemutatott egyszerű modell számos fizikai jelenséget 
elhanyagol. Ilyen például az egyfotondetektorok sötét
zaja (a beérkező fotonok hiányában megjelenő kimene-
ti jel), vagy az időmérés véges felbontása, pontossága. 
Az időbélyegző eszköz típusától függően ez a felbontás 
piko-nanoszekundumos nagyságrendű. A véges fel-
bontás korlátozza az elérhető bitráta nagyságát. Még 
nagyobb problémát jelent, hogy attól függően, hogy 
a mérési órajel ciklusán belül mikor észleltük a fotont, 
két  ugyanolyan valós hosszú időtartamot digitalizálva 
kaphatunk két eltérő értéket is. Bemutattuk és szám
szerűsítettük, hogy ez korrelációt okoz a mért időtar-
tamok, ezáltal a generált bitek között is [7]; majd meg
alkottunk egy algoritmust, mely egyszerre szünteti meg 
ezt a nem ideális működést, valamint kezeli a véletlen-
szerű holtidő-ingadozás problémáit [8].

3 �A  következő bekezdésben hivatkozott publikációink mindegyike 
nyílt hozzáférésű, így szívesen ajánljuk őket az érdeklődők figyel-
mébe.

További célunk még a bitgenerálás hatásfokának és 
sebességének növelése. A korábban bemutatott egyszerű 
extraktor ugyan jól működik, viszont kicsi a hatékony
sága, mivel méréspáronként mindössze egy bit keletke-
zik, holott a fotonok detektálásának időkülönbsége egy 
folytonos mennyiség, mely a detektálás véges időfelbon-
tása miatt a számítógépben már diszkrét adatokra kép-
ződik le. Ehhez egyrészt bemutattuk, hogy a kinyerhető 
entrópia mértéke jelentősen nagyobb, mint az alapmód-
szer fél bit / észlelt esemény értéke, és utófeldolgozási 
módszereket ajánlottunk arra, hogy ezt kihasználva is 
egyenletes eloszlású maradjon a bitsorozatunk [9]. Má-
sik módszerünk pedig azáltal növelte a hatékonyságot, 
hogy nem vetette el az egyenlőnek mért időpárokat 
sem, hanem egymást követő mérések csoportosításá-
val hozott létre több bites, egyenletes eloszlást követő 
blokkokat. Az időkülönbségek statisztikus eloszlásából 
meg lehet határozni a min-entrópiát, melynek értéke 
eseményenként 9,66 bit. Az utófeldolgozás során ez az 
érték valamelyest csökken 9,14 értékre, a detektálás 
maximális rátája pedig ötmillió foton másodpercen-
ként; tehát a készülékünk véletlenbit-generálási rátájá-
nak felső határa 45 Mb/s, melynek eléréséhez célhard-
verre lenne szükség. A rendelkezésre álló személyi 
számítógéppel ennél szerényebb, néhány Mb/s értéket 
tudunk megvalósítani.

Oktatási és demonstrációs célokból létrehoztunk 
egy weboldalt, amely a http://qrng.hit.bme.hu címen 

2. ábra. A véletlenszám-generátorunk fényképe. 1: lézerdióda; 2: egymódusú optikai szál; 3: szabályozható opti-
kai csillapítók; 4: csillapító kontroller; 5: optikai nyalábosztó; 6: lineáris fotodetektor; 7: fotoelektron-sokszorozó
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érhető el, egyelőre kizárólag az egyetem belső hálózatá-
ról. Az oldalt kiszolgáló webszervert bekapcsolt állapo-
tában a QRNG látja el véletlen bitekkel, egyéb esetben 
viszont egy jó minőségű álvéletlen-generátorból nyeri 
ki az értékeket. Az oldal három funkciót lát el. Egyrészt 
referenciaként szolgál, röviden bemutatja kutatócso-
portunk QRNG-vel kapcsolatos munkáját, beleértve a 
weblapot kiszolgáló generátor működésének leírását 
és  a kapcsolódó tudományos munkáink listáját is. Má-
sodsorban lehetőséget biztosít arra is, hogy a felhaszná-
lók véletlen biteket (vagy ezekből formált hexadecimális 
értékeket) igényeljenek, akár egyszerű, szöveges formá-
tumban, akár egy alkalmazásprogramozási interfészen 
(API-n) keresztül. A harmadik funkció pedig az, hogy 
vizualizációs módszerek és szórakoztató alkalmazások 
segítségével közelebb hozzuk a véletlenszerűség vilá-
gának megértését az érdeklődő laborlátogatók számára 
– például a Kutatók Éjszakája keretein belül ebbe is be
pillantást nyerhetnek a programunk résztvevői.

Illusztrációképpen a π értékének becslését mutatjuk 
be Monte Carlo-szimulációval: vegyünk fel egy egysé-
goldalú négyzetet, majd ezen belül egy olyan, 0,5 sugarú 
kört, melynek a négyszög minden oldala az érintője. Ge-
neráljunk ezután egyenletes eloszlással Nössz darab pon-
tot a négyzeten belül, majd számoljuk meg, hány pont 
esett ezek közül a körbe (Nkör). Ha a véletlen számok 
egyenletes eloszlásúak voltak, igaz lesz, hogy a körbe, 
illetve négyzetbe eső pontok száma a síkidomok terüle-
tének arányához tart a pontok számának növelésével, így 
a becsült értékünk

kör kör

négyzet össz

4 4 4
4

A N
.

A N
ππ = ⋅ = ⋅ ≈ ⋅

A módszert 10, 25 és 50 ezer generált pont segítsé-
gével a 3. ábra szemlélteti. Természetesen minél több 
pontot használunk, várhatóan annál pontosabb lesz a 
becslésünk.

Összefoglalásként elmondhatjuk, hogy a kvantum
alapú véletlenszám-generálás egy aktívan kutatott, sok 
új eredménnyel kecsegtető terület, melyet egyre bővülő 
csoportunk is több irányból vizsgál, valamint népsze-

rűsít. A QRNG-kkel előállított bitsorozatok hozzásegít-
hetnek minket egy olyan világhoz, ahol a titkosítandó 
információink védettnek tekinthetőek akár kvantum
számítógépes támadásokkal szemben is.
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I. Szokásos Bell-nemlokalitás

Egy kicsit unalmas lenne egy valódi Schrödinger-macs-
kás kísérlet. Képzeljük el, hogy brit tudósok nagy fel-
hajtás mellett bejelentik, hogy több évtizednyi műszaki 
áttörésnek hála készen állnak a világ szeme láttára vég-
rehajtani az igazi Schrödinger-macskás kísérletet. Élő 
közönség és YouTube-közvetítés kíséretében, több millió 
szempár láttára előkészítik a dobozt, a méregüvegcsét, a 
kalapácsot, a radioaktív atomot, ami előidézi majd a szu-
perpozíciót, no meg a macskát. Aztán elvégzik a kísérle-
tet, kinyitják a dobozt, és lám-lám... – ott ül egy össze
zavarodott, de élő macska.

Ez nem meglepő látvány. Akár igaz volt a macska 
kvantumos szuperpozíciója, akár nem, ezt fogjuk látni a 
kísérlet végén: vagy él a macska, vagy meghalt. Azaz nem 
tudunk meg semmit a mögöttes fizikáról ettől a kísérlet-
től. Ugye, ha nincs olyan, hogy élő és holt állapotok szu-
perpozíciója, akkor már a doboz kinyitása előtt eldőlt, 
hogy él-e vagy hal a macska. Ha pedig van, akkor ez csak 
abban a  pillanatban „dől el”, amikor kinyitjuk a dobozt.

Sokkal izgalmasabb az, amire John Bell jött rá 1964- 
ben: van olyan kísérlet, amit ha elvégzünk, akkor mást 
fogunk látni, ha létezik szuperpozíció, mint ha nem léte-
zik. Bell az 1935-ös kísérteties távolhatásos gondolatokra 
reflektálva jutott egy olyan gondolatkísérletre, ami a lo-
kális hatások hagyományos tapasztalatának mond ellent 
– ezért hívjuk ma ezt a jelenséget Bell-nemlokalitásnak. 
A kísérlethez szükséges koncepcionális és technikai kö-
rülmények megvalósításáért 2022-ben meg is kapta a 
Nobel-díjat Alain Aspect, John F. Clauser és Anton Zei
linger [1].

Bell javaslatát egy egyszerű összeöltözős játékkal le-
het szemléltetni. Tegyük fel, hogy Alíz és Béla távoli or-
szágokban laknak, de irtó szerelmesek egymásba. Ezért 
kitalálják, hogy néha össze szeretnének öltözni, de csakis 
akkor, ha mindketten olyan kedvükben vannak aznap; 
ha már csak egyikük is nem összeöltözős hangulatában 
kelt, akkor az a cél, hogy más színbe öltözzenek (1. ábra). 

Kicsit formálisabban, minden reggel pontban ugyanak-
kor kelnek fel, és a felkelés pillanatában 50–50% eséllyel 
mindketten magukban eldöntik, hogy van-e kedvük ös�-
szeöltözni a másikkal aznap. Aztán gyorsan felöltöznek 
vagy kék, vagy piros ruhába. Utána reggeli közben videó-
hívás keretében megbeszélik, hogy kinek milyen kedve 
volt, és sikerült-e összeöltözni. Klasszikusan (azaz kvan-
tumos trükkök nélkül) akármilyen stratégiát beszélnek 
meg, ha tényleg minden reggel véletlenszerűen döntik 
el, hogy van-e kedvük összeöltözni (úgy, hogy a másik 
ne tudja meg döntésüket, mielőtt felöltözik!), akkor leg-
feljebb 75%-ban sikerülhet a céljuk. Egy stratégia erre 
szimplán az, hogy Alíz minden nap kéket húz, Béla meg 
pirosat – így csak akkor nem sikerül a céljuk, ha mind-
ketten össze szerettek volna öltözni, ami pont 25% esél�-
lyel történik meg.

Fantasztikus módon, ha Alíznak és Bélának hozzáfé-
résük van egy kvantumos forráshoz, ami összefonódott 
részecskepárokat oszt szét köztük (minden reggel egy 
párt), akkor a megfelelő mérésekkel ezt a játékot kb. 85% 
eséllyel tudják megnyerni. Mégpedig tegyük fel, hogy 
polarizációjukban összefonódott fotonpárokat oszt szét 
köztük a kvantumos forrás, azaz (1/√–2 )(|VVH + |FFH), 
ahol V a vízszintes polarizációjú állapot, F meg a függő
leges. Alíz a nála lévő foton polarizációját F irányban méri 
meg, ha van kedve összeöltözni és 45 fokkal elforgatott 
irányban, ha nincs. Béla pedig ezekhez képest átlósan, 
22,5 fokos vagy 67,5 fokos irányba állítja be polarizációs 
szűrőjét (lásd pl. [2]). A kimenetelek függvényében (ilyen 
irányba volt-e a polarizáció vagy sem) vagy kékbe öltöz-
nek, vagy pirosba. A megfelelő választások esetén min-
den bemenetelre éppen cos2 (22,5°) ≈ 85% esélyük van jól 
dönteni úgy, hogy közben nem is ismerték meg, hogy a 
másik személynek milyen kedve volt ébredéskor.

Ezt a játékot el lehet játszani mai kísérleti berende-
zésekkel, és ha sok kör után a körök háromnegyedénél 
valóban jelentősen többször nyernek a szerelmesek, 
akkor nem csupán valami kvantumos fölényt tudnak 
felmutatni, hanem be is bizonyítják, hogy a mérések ki-

1. ábra. Alíz (A) és Béla (B) minden reggel eldöntik, hogy össze sze-
retnének-e öltözni (ne/légyszi) és aztán, hogy milyen ruhát vesznek 
fel (kék/piros). Ha megmérik a köztük elosztott összefonódott ré-
szecskepárt, akkor jobban teljesíthetnek
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menetelei véletlenszerűek. Miért? Mert ha nem lennének 
véletlenszerűek, akkor már a mérés előtt le lehetett vol-
na írni a kimenetet egy darab papírra (lehet, hogy Alíz 
és Béla nem tudnának erről a papírról, de le lehetne írni 
valahova egy titkos papírra). Viszont ha mindkét kime-
netet le lehetett volna írni egy-egy darab papírra, akkor 
tulajdonképp nem is lett volna szükség a kvantumosan 
összefonódott kísérleti berendezésre, a két papírfecni 
azt teljesen helyettesíthetné. Viszont ha papírfecnikkel 
próbáljuk megnyerni a játékot, akkor klasszikus straté-
giákat tudunk csak végrehajtani – azaz maximum 75% 
eséllyel nyerhetnénk!

Ennek a következményei elképesztően messzeme-
nőek. Egyrészt, ha Alíznak és Bélának tényleg van sza-
bad akaratuk, és összeöltözési kedvüket tényleg minden 
reggel egymástól függetlenül döntik el, akkor tudnak 
valódi véletlen számokat generálni. Ráadásul a véletlen 
számok értéke akkor dől el, amikor megmérik a kvantu-
mos részecskéjüket. Viszont távoli országokban laknak, 
egy időben mérnek, és mérési eredményeik konziszten-
sek egymással, ezért valahogy nemlokálisan dőlnek el 
az eredmények. Sőt, mivel nem voltak előre eldöntve az 
eredmények, senki sem tudhat róluk. Akkor és ott jöttek 
csak létre a számok, amikor megmérték azokat – csak 
ők tudnak róluk. Azaz ezek a korrelált mérési eredmé-
nyek titkosak, így tökéletes titkosításra is használhatóak. 
Mindehhez pedig csupán annyi kellett, hogy feljegyez-
zék a döntéseket és ruhaszíneket, és konstatálják, hogy 
jelentősen több mint 75% eséllyel nyernek – azaz nem is 
kellett jól ismerniük a kísérleti berendezés részleteit vagy 
fizikáját, úgymond műszertől függetlenül tudják a vélet-
lenszerűséget hitelesíteni.

Néhány fontos tulajdonsága a Bell-nemlokalitásnak:
•	 Csak akkor lehet kvantumos előny, ha mindkét fél-

nek a saját két mérése nem kommutáló, azaz nem fel
cserélhető. Ugye, ha megmérjük egy foton polarizá
cióját a vízszintes-függőleges irány mentén, akkor azzal 
bele is kényszerítjük a kapott eredménybe. Ha meg
mérnénk utána átlós irány mentén, akkor a kapott ér-
tékek eloszlása más lehet, mint ha egyből átlós irány 
mentén mértünk volna. Matematikailag Ma

ne Ma
légyszi ≠ 

Ma
légyszi Ma

ne , ezek Alíz a kimenetelének mérési projek-
torai.

•	 Véletlenszerűséget csak akkor tudunk bizonyítani a 
kimenetekben, ha van valamilyen bemeneti véletlen-
szerűség is (hogy van kedv vagy nincs kedv az ös�-
szeöltözéshez). Ha nem lenne véletlenszerű választás, 
akkor mindent szimulálni lehetne klasszikusan és újra 
papírcetlikkel elküldeni a feleknek.

II. Hárman párban
Természetes kérdés, hogy mi van, ha hárman, vagy töb-
ben vannak. Lehetséges ebben a helyzetben valami erő-
sebb korrelációt létrehozni, mint csak páronként elját-
szani a Bell-játékot [5]? Ennek többféle változata is lehet, 
például, hogy akárhányan vannak is, egy közös kvantu-

mos forrástól kapnak részecskéket – ez viszonylag köz-
vetlen általánosításhoz vezet. De tekintve, hogy techni-
kailag sokkal egyszerűbb kétrészes összefonódást 
létrehozni, mint sokrészeset, azt is meg lehet vizsgálni, 
hogy mi van, ha csak páronként vannak összekötve 
kvantumos forrásokkal a résztvevők, mint a 2. ábrában. 
Már így többre vagyunk képesek, mint a sztenderd 
Bell-kísérletben?

Igen. Ha van három résztvevő, A, B, C, akik páron-
ként osztanak meg egy erőforrást, akkor ők egy úgy
nevezett háromszöghálózatot alkotnak. Egy ilyen há-
lózatban a résztvevők úgy is tudnak a hagyományosnál 
erősebb korrelációkat létrehozni kvantumos források-
kal, ha mindig csak ugyanazt a mérést végzik el. Azaz itt 
minden körben ugyanazt a mérést hajtják végre, nincsen 
mérési bemenet, mérési választás. Ez azért különös, 
mert a hagyományos Bell-nemlokalitás esetében a klas�-
szikusnál erősebb korrelációk szükséges feltétele, hogy 
résztvevőnként legalább kétféle mérés legyen, amelyek 
nem kommutálnak. De itt elég egyfajta mérés. Matema-
tikailag ezzel az egyfajta méréssel a három résztvevő a 
következő eloszlásból tud mintavételezni:

		 p(a, b, c) = Tr(ρα ⊗ ρβ ⊗ ργ · Ma
A ⊗ M bB ⊗ M cC), 	 (1)

ahol ρα jelzi az α forrás által kibocsátott állapotot, Ma
A  

pedig Alíz a kimenetelének mérési operátorát (projek
torát), és hasonlóan a többieknek. Ezzel szemben klas�-
szikus forrásokat (rejtett változókat) úgy lehet model-
lezni, hogy minden körben egy tetszőleges valós számot 
küldenek a két érintett félhez, ugyanis ebbe tetszőleges 
információt belekódolhatnak. Így a következő eloszlás-
ból lehet klasszikusan mintavételezni:
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 (2)

ahol Pα(α̃ ) a valószínűsége, hogy az α forrás az α̃  számot 
küldi B-nek és C-nek, illetve PA(a|β̃ , γ̃ ) a valószínűsége, 

2. ábra. (a) A háromszöghálózat, amelyben három résztvevő (A, B, C) 
páronként van összekötve egy-egy klasszikus vagy kvantumos kétré-
szecskeforrással (α, β, γ). Minden körben feldolgozzák a forrásból ka-
pott jeleket, és kijelentik az egybites végeredményüket (a, b, c). (b) A 
kvantumos javaslat, amelyben a források egy-egy fotont a jobbra és balra 
küldés szuperpozíciójában állítanak elő, azaz ψ + = (1/√2) (|01H + |10H) 
[3], vagy két fotonnal ugyanezt [4]. A résztvevők a beérkező fotonokat 
u2 ≠ 0,5 áteresztésű nyalábosztón való interferálás után mérik meg
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hogy A az a kimenetet adja, ha β̃ , γ̃  értékeket kap a β, γ 
forrásoktól. Fontos észrevenni, hogy mindkét egyen-
letben a források függetlenségét feltételeztük, azaz pl. 
P(α̃  , β̃  , γ̃ ) = Pα(α̃ )Pβ(β̃ )Pγ(γ̃ ). Vegyük észre, hogy ez egy 
erős korlátozás a klasszikus modellekre vonatkozóan, 
amit azért teszünk, hogy egyértelmű legyen a kvantu-
mos forrást használó protokoll „kvantumos előnye”.1

No, és mi az a kvantumos mérés, ami olyan eloszlás-
hoz vezet, ami hagyományosan nem elérhető? Az első 
javaslatok a szokásos Bell-állapotokat osztották szét a 
résztvevők között, és Bell-méréseket végeztettek velük. 
Meglepő módon ez sajnos olyan korrelációkhoz vezetett, 
melyeket könnyen reprodukálni tudtak klasszikus mo-
dellek. Viszont ha |01H + |10H állapotokat osztanak szét 
a felek között, és a résztvevők a két bejövő módusukon 
a következő összefonó bázisban hajtanak végre mérést 
(ahol u2 ∈ (0,5, l), u2 + v2 = 1),

		

{

}
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akkor a korrelációk az (1) egyenlet szerinti eloszlásban 
olyan erősek, hogy a korrelálatlan klasszikus forrásokkal 
nem lehet reprodukálni ezeket [6–8] (Fotonokkal ez meg 
is valósítható, lásd IV. szakasz). Sőt, az is megmutatható, 
hogy ha ezt az eloszlást tapasztaljuk a laborban, akkor fel-
téve, hogy a források függetlenek egymástól, összefonó-
dott részecskepárok kellettek, hogy legyenek szétosztva, 
valamint a mérések is összefonó mérések kellett, hogy 
legyenek. Ezekre építve meg lehet mutatni, hogy valódi 
véletlenszerűség van a mérési kimenetekben egy ilyen 
helyzetben is [9].

Mik a következményei ennek? A fenti példában csak 
egy fix bázisban végezte minden fél a mérését, ezért
•	 nem kommutáló mérések nem szükségesek a nemlo-

kalitáshoz, és
•	 bemeneti véletlenszerűség nem szükséges ahhoz, 

hogy véletlenszerű számokat generáljunk.

Viszont fontos kiemelni, hogy a források független
ségét feltételeztük. így olyasfajta kiskapumentes kísér-
letet nem fogunk tudni végrehajtani, amelyet a hagyo-
mányos Bell-kísérleteknél lehetett. Ott ugyanis, ha a két 
résztvevőt elég távol vittük egymástól, akkor garantálni 
lehetett, hogy az egyik bemenetéről ne tudjon a másik, és 
vice versa, feltéve, hogy a bemeneteket tudják valódi vé-
letlenszerűséggel generálni (ezt gyakran a szabad akarat 
feltételezésének hívjuk). A fenti háromszereplős esetben 
viszont akármilyen távol visszük is egymástól a szemé-
1 �E gy másik alternatíva lenne, ha azt próbálnánk megmutatni, hogy 

ilyen kvantumos forrásokból származó korrelációkat semmilyen el-
képzelhető klasszikus rejtett változó nem tud megmagyarázni. Ekkor 
a klasszikus modell p(a, b, c) = ∫ d λ p(a|λ)p(b|λ)p(c|λ)p(λ) formát ölte-
ne. Ez viszont olyan erős, hogy bármilyen korrelációt képes előállítani, 
így a bemenetek nélküli hálózatokban nincs értelme ezzel szembesíte-
ni a korlátozott kvantumos korrelációkat.

lyeket, a három forrás függetlenségét ez nem befolyásol-
ja – a távoli múltban akár lehetne is egy központi hatás, 
ami korrelálja a három forrást, így egy ilyesfajta központi 
rejtett változó meg tudná magyarázni a kvantumkorre-
lációinkat is. Így maradunk abban a helyzetben, hogy a 
klasszikus források függetlensége feltételezés marad, ha-
sonlóan, ahogy a szabad akarat feltételezését is meg kel-
lett tartani a hagyományos Bell-kísérletben.

Összességében egy sor érdekes elméleti vonatkozása 
van a háromszöghálózatnak. Ezzel párhuzamosan szép 
lassan kezd kirajzolódni egy kép, hogy csupán kétré-
szecskés kvantumforrásokkal nagyobb kvantumhálóza-
tokon is erős többszereplős korrelációkhoz lehet jutni. 
Viszont két nagy kérdés maradt még ebben a témában, 
amelyeket igyekszünk megválaszolni.
1.	Lehet-e alkalmazásokat építeni a hálózati nemlokali-

tásra?
2.	Meg lehet valósítani a hálózati nemlokalitást kísérleti 

körülmények között?

III. Alkalmazás nagy hálózatokon

A Bell-nemlokalitás legtöbb kriptográfiai alkalmazása 
azon a tényen alapul, hogy a kimenetek bizonyíthatóan 
véletlenszerűek, feltéve, hogy a bemenetek (ne, légyszi) 
egy potenciális rejtett változótól vagy támadótól füg-
getlenek. Azaz fontos, hogy valamennyire meg tudjunk 
bízni a bemeneti választásokat generáló folyamatban, 
tipikusan egy véletlenszám-generátorban. Kérdés, hogy 
a bemenet használatát el lehet-e kerülni a kriptográ
fiában azzal, hogy a fentiekben leírt hálózati nemlokali
tást használjuk.

Kiderül, hogy igen, a háromszöghálózat kimenetei 
is bizonyíthatóan véletlenszerűek, persze továbbra is a 
hálózati feltételezéssel élve [9]. Azaz fel kell tenni, hogy 
nincsen egy központi rejtett változó, hanem ha léteznek, 
akkor a rejtett változók is tiszteletben tartják a három-
szögstruktúrát (minden forrás helyére egy klasszikus 
rejtett változót képzelünk, (2) szerint), és függetlenek 
egymástól. Van létjogosultsága ennek a feltételezésnek? 
Meggyőződésünk, hogy van, ha kriptográfiai alkalma-
zások irányába megyünk. Mert mi is a szerepe a rejtett 
változónak? Az egy olyan dolog, ami meg próbálja hatá-
rozni a kimenetek értékét ahelyett, hogy azt kvantumos 
véletlenszerűség döntené el. Azaz nagyon hasonlít egy 
kriptográfiai támadóra, hekkerre, aki megpróbál be-
avatkozni abba, ahogy a véletlen számokat generáljuk, 
és megpróbálja ő eldönteni, hogy mik a mi kimeneteink 
– mindezt a tudtunk nélkül. Ilyen értelemben tekint
hetünk a hálózatban a rejtett változókra hekkerekként, 
és  a függetlenségi feltételezés arra vonatkozik, hogy a 
hekkerek együttműködnek-e.

Így a hálózati függetlenség kérdése átalakul azzá, 
hogy fel lehet-e tenni, hogy a potenciális támadók, 
hekkerek, korlátozottan férnek hozzá a hálózathoz, 
és nem működnek mind együtt. Egy kis háromszög-
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hálózatban nehéz megindokolni, hogy miért dolgozna 
külön három kis hekker a három forrás helyén. De ha 
lépünk egy nagyot, és megvizsgálunk egy N fős háló-
zatot, máris más képet kaphatunk. Legyen az N fő egy 
gyűrűn úgy, hogy páronként vannak közös kvantumos 
forrásuk. Akkor minden forrás kibocsátja a |01H + |10H 
állapotot, és minden fél elvégzi a szokott (3) méréseket. 
Ismétlések esetén egy p(a1, a2, …, aN) eloszlásból min-
tavételezünk, amit le is  tudunk ellenőrizni magunk-
nak, ha sokszor elismételjük, és minden fél kijelenti a 
kimenetét minden körben. Sikerült megmutatnunk, 
hogy ez esetben [10]:
•	 Ha minden forrás helyére egy hekker kerül, akik füg-

getlenül működnek egymástól (3. ábra (a) topológia), 
akkor nem tudják a p(a1, a2, …, aN) eloszlást reprodu-
kálni (azaz az eloszlás hálózat-nemlokális).

•	 Ha az N hekkerből N – 2 szomszédos összedolgozik 
(3. ábra (b1) topológia), akkor sem tudják a p(a1, a2, 
…, aN) eloszlást reprodukálni (azaz az eloszlás nem
lokalitása robusztus a hálózat topológiájával szem-
ben).

•	 Még akkor is, ha van N – 2 szomszédos hekker (a 3. 
ábra (b2) topológiájának megfelelő módon), az a2 ki-
menetel véletlenszerű.

Ez elképesztően leegyszerűsíti és kriptográfiai érte-
lemben lehetővé teszi a nagy hálózatokban való műkö-
dést. Ugyanis ha N résztvevőnk van, elég, ha csak egy 
kis hálózatrészben bízunk meg, úgy is tudunk nemlo-
kalitást, véletlenszerűséget bizonyítani. Azaz nem kell 
feltételeznünk, hogy a hálózatot támadók csak lokáli-
san hekkelnek, és nem is működnek együtt. Nyugodtan 
összedolgozhat majdnem az összes hekker és résztvevő 
(3.  ábra (b1)). Ebből kiindulva fejlesztünk jelenleg egy 
kriptográfiai protokollt, amely
•	 nem igényel bemeneti véletlenszerűséget,
•	 minimális tudást igényel a hálózat topológiájáról,
•	 műszerfüggetlen,
•	 M < N résztvevő közt létrehoz egy titkos kulcsot.

IV. Kísérleti megvalósítás neurális hálók 
segítségével

Általánosságban nehéz eldönteni, hogy egy adott 
p(a,  b,  c) eloszlásnak van-e (2) szerinti felbontása. A 
hagyományos, egyforrásos Bell-kísérletnél ez egy kön�-
nyen megválaszolható kérdés, ugyanis a klasszikus kor-
relációk egy konvex politópot alkotnak, így elég ennek 
extremális pontjait karakterizálni. Ezzel szemben (2) 
egy nem konvex halmazt ír le, így annak még a nume-
rikus feltérképezése is nehézkes hagyományos heurisz-
tikus módszerekkel. Ezért gondolkodtunk el azon, hogy 
esetleg modernebb eszközökkel lehet-e valahogy kezelni 
a problémát. Arra jutottunk, hogy ha egy mesterséges 
neurális hálót átalakítunk, hogy alakja tükrözze a hálózat 
topológiáját, akkor az szükségszerűen csak a hálózaton 
lokális (klasszikus) eloszlásokat tud előállítani. Ezzel a 
lokális eloszlásokat fel tudjuk térképezni: megadunk egy 
céleloszlást, és megkérjük a neurális hálót, hogy alakítsa 
a súlyait úgy, hogy minél inkább megközelítse ezt a cél
eloszlást. Ha sikerül neki, akkor van egy explicit klas�-
szikus modellünk. Ha viszont konzisztensen, többszöri 
próbálkozásra sem sikerül közel kerülnie, akkor az erős 
indikáció arra nézve, hogy a céleloszlás nemlokális, nin-
csen klasszikus magyarázat [7].

A neurális háló így kiváló társa az elméleti kutatónak, 
ugyanis bármilyen ötletünk van egy céleloszlásra, az al-
goritmus megmondja, hogy szerinte az nemlokális-e. 
Sőt, nemcsak egy adott céleloszlást tudunk célba venni, 
hanem megkérhetjük, hogy egy sejtett Bell-egyenlőt-
lenséget próbáljon megsérteni [11]. Így sikerült is né-
hány sejtést felállítani, amelyek közül egyet be is bizo-
nyítottak [8].

A neurális hálónk (LHV-Net) mindmáig az egyetlen 
praktikusan is használható algoritmus, ami megbecsüli, 
hogy egy adott kvantumos stratégia mekkora zajt képes 
elviselni úgy, hogy még nemlokális maradjon. Ez kife-
jezetten fontos kérdés, amikor nemcsak az elméletet 
vizsgáljuk, hanem a kísérletek felé fordulunk. Már van 
is olyan háromszög-nemlokalitás kísérlet, aminek a ki-
értékeléséhez az LHV-Netet használták, illetve sikerült 
is az imént felállított egyenlőtlenségeket megsérteniük 
[12].

Ehhez a kísérlethez muszáj volt a végeredményeket 
utólag, globálisan feldolgozni, és leszűrni ezekből, hogy 
milyen lett volna az eloszlás, ha minden foton megérke-
zett volna. Sajnos viszont ilyen globális feldolgozás (ahol 
pl. selejtezünk egy kört, ha nem érkezett meg elég foton 
mondjuk, Alízhoz) nagyon erős, sőt tetszőleges korrelá-
ciókat is létre tud hozni a három résztvevő között klas�-
szikus forrásokkal is,2 tehát egy szigorú kísérleti eljárás-
nál ez nem lenne megengedhető. Így jutunk el a hálózati 

2 � Képzeljük el például, hogy három klasszikus forrás csak random küld 
egy bitet (0-t vagy 1-et) mindkét félhez. A felek globális feldolgozással 
elvetik azokat a köröket, amelyekben nem a = b = c = 0 vagy a = b = c = 
1 volt a kimenetel, így elképesztően erős korrelációhoz jutnak.

3. ábra. (a) N résztvevő esetén a gyűrű hálózaton mintavételezhetünk 
egy p(a1, a2, …, aN) eloszlásból, ha kvantumosak a források. Ha a forrá-
sokat nem együttműködő támadókra cseréljük ebben a gyűrűben, ak-
kor nem tudják befolyásolni a kimeneteket úgy, hogy ne vennénk észre. 
(b1) Ha a hálózat nagy részében ismeretlen, hogy együttműködnek-e 
a támadók, akkor sem tudják úgy befolyásolni a kimeneteleinket, hogy 
ne vennénk észre. (b2) A hálózat ismeretlen részét modellezhetjük egy 
nagy együttműködő félként, így visszanyerünk egy (bővített) három-
szög-topológiát [10]
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nemlokalitás második nagy kérdéséhez: meg lehet-e va-
lósítani a laborban, lehetőleg optikával, ami nagy távol
ságokon is használható?

A hálózati nemlokalitás kísérleti megvalósítását ke-
resve kitaláltunk egy optikai elrendezést, ami könnyen 
megvalósítható lenne: |01H + |10H állapotokat bocsátanak 
ki a források, és ezek nyalábosztókra érkeznek, majd 
megmérjük, hogy érkezett-e foton (2. ábra). Megkérdez-
tük az LHV-Netet, hogy nemlokális-e a javasolt kísér-
letből származó eloszlás. Hamar megtudtuk, hogy igen, 
így tudtuk, hogy megéri ráfordítani az időt és energiát, 
hogy bebizonyítsuk a nemlokalitását. Ez sikerült is, és az 
elméleti vizsgálat során kiderült, hogy ez gyakorlatilag 
optikai megvalósítása a (3) mérésnek [3]. Ez egy gyönyö-
rű optikai értelmezését is adja annak a helyzetnek, ahol 
a kvantumelőny abból származik, hogy bizonyos kime-
neteleknél (azoknál, amikor minden félhez egy foton 
érkezett) a fotonok annak szuperpozíciójában vannak, 
hogy mind jobbra, mind balra mentek a hálózatban, azaz 
a globális állapot ekkor

		 .Ψ∝ +  	 (4)

Klasszikusan vagy az egyik, vagy a másik irányba haladva 
tudnának eljutni az összes résztvevőhöz.

Sajnos az is kiderült, hogy ha vannak veszteségek az 
optikai módusokban vagy a mérési berendezésben, ak-
kor nagyon hamar elhal a nemlokalitás, körülbelül 5% 
veszteséget tűr el (elméleti úton bizonyítottan csak kb. 
0,5%), ami messze a szükséges kísérleti küszöb alatt 
van. Ennek javítására kicsit módosítottunk az elrende-
zésen: nem |01H + |10H állapotokat küldetünk a forrá-
sokkal, hanem |02H + |20H állapotokat, azaz két fotont. 
Kísérletileg ezek az állapotok is még „könnyen” meg
valósíthatóak, és az LHV-Net azt súgta nekünk, hogy 
így is nemlokális az eloszlás (ugyanazokat a nyalábosz-
tókat használva), sőt a hibatűrése sokkal jobb, akár 50% 
veszteséget is képes elviselni. Elméleti munkával precí-
zen is sikerült bebizonyítani az eloszlás nemlokalitását, 
illetve azt is, hogy egyfotonos veszteségek ellen 10%-os 
hibát képes eltűrni. Ráadásul megadtunk egy módszert, 
hogy hogy lehet elkerülni a globális utólagos feldolgo-
zást. A robusztusság nagyságrendileg jobb, mint az egy-
fotonos sémában, ami megnyitja az utat a kiskapumen-
tes kísérletek előtt [4].

V. Végszó
Összefoglalva, a kvantumos hálózatokban vizsgálva a 
nemlokalitást meg tudjuk alapozni a jövő kvantumos 
internetének kriptográfiai protokolljait, miközben érde-
kes kérdéseket vizsgálhatunk a kvantumfizika alapjairól. 
Az egyik legérdekesebb tény az, hogy nem kell többfajta 
(nem kommutáló) mérés ahhoz, hogy tanúsítványt állít-
sunk ki véletlenszerűségről és összefonódottságról, ha 

hajlandóak vagyunk a hálózatról bizonyos dolgokat fel-
tételezni. Kutatásunk folytatásaképp ezeket a szükséges 
feltevéseket vizsgáljuk jobban: nagy hálózatok esetén 
elég, ha csak egy kis részét ismerjük jól a hálózatnak, úgy 
is lehet tanúsítani véletlenszerűséget és arra kriptográfiai 
protokollokat építeni. Ehhez kicsit át kell formálnunk a 
gondolkodásunkat, jobban közelítve az elosztott számí-
tás, decentralizált rendszerek mentalitásához. Végül az 
elméleti és alkalmazott vonatkozások mellett egy egé-
szen érdekes matematikai és numerikus feladvánnyal is 
jár a lokális korrelációk feltérképezése [11], ami egy Ru-
bik-kocka- vagy sudokuszerű feladvány.
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Bevezetés

A fizika tudományában az elmúlt évszázadban történt 
elképesztő fejlődés egy jelentős része a mikroszkopikus 
világ egyre pontosabb megértéséhez kapcsolódott. Meg-
tudtuk: az atomok, molekulák, atommagok és az ezeket 
alkotó szubatomi részecskék világában a klasszikus fizika 
törvényei érvényüket veszítik, megkerülhetetlenné válik 
a természet kvantumos viselkedése. A kvantumelmé-
let kutatása és egyre precízebb megértése azonban nem 
csupán rendkívül érdekes tudományos feladat, hanem 
különféle technológiai alkalmazások sorát teszi lehetővé. 
Gondolhatunk itt többek között az atomenergiára vagy 
különféle elektronikai eszközeinkre, melyek nélkül ma 
már szinte elképzelhetetlenek a mindennapjaink.

A több részecskét tartalmazó rendszerek viselkedé-
sének megértése a kvantummechanika születése óta ko-
moly kihívások elé állítja a fizikusközösséget. Analitikus, 
akár papíron elvégezhető számítások csupán közelítés-
ként, illetve nagyon kicsiny vagy speciális modellrend-
szerekre alkalmazhatóak. Numerikus szimulációk fut-
tathatóak hagyományos számítógépeken, de mint majd 
látjuk, a hatalmas állapottér – „a dimenzionalitás átka” – 
igencsak megnehezíti a dolgunk. Nem véletlenül idézzük 
gyakran Feynmant, aki szerint a természet igazán haté-
kony szimulációjára csak kvantumos eszközökkel lehet 
reményünk [1], melyekben megvalósíthatóak, kontrollál-
hatóak és manipulálhatóak az összefont sokrészecskés ál-
lapotok. Valóban, a kvantumchipek megvalósítása terén 
az utóbbi évtizedben tapasztalt ugrásszerű fejlődés azzal 
kecsegtet, hogy a közeli jövőben alkalmassá válhatnak 
valódi fizikai rendszerek precíz szimulációjára [2]. Amíg 
azonban eljön az ún. „kvantumfölény” ideje, hagyomá-
nyos (úgymond klasszikus, azaz nem kvantum-) számí-
tógépekre kell hagyatkoznunk, és mint jelen cikkünkben 
is mutatjuk, bőven vannak még lehetőségek a klasszikus 
algoritmusok fejlesztése terén is. Ráadásul a klasszikus 
számítógépek nagyobb flexibilitása a kvantumos hard-
verekhez képest előreláthatólag hosszabb távon is meg 

fog maradni, ezért az is elképzelhető, hogy a jövő a hib-
rid kvantum-klasszikus megoldásoké lesz, ahol továbbra 
is lényeges feladat hárul majd a klasszikus algoritmusa-
inkra. Kutatócsoportunkban, a Legeza Örs által vezetett 
Erősen Korrelált Rendszerek „Lendület” Kutatócsoport-
ban éppen ilyen kiemelkedően hatékony klasszikus algo-
ritmusok kutatásával foglalkozunk.

Kvantumos soktestrendszerek
A fent vázolt szimulációs nehézségeket, nevezetesen a 
hatalmas állapottér problémáját, először egy mindenki 
által jól ismert kvantumrendszeren, a nitrogénatom pél-
dáján mutatjuk be, melynek leggyakoribb izotópja egy 
7 protonból és 7 neutronból álló atommagot, valamint 
7 elektront tartalmaz. A nehéz atommagot összetartó 
erők sok nagyságrenddel erősebbek az elektronokat pá-
lyán tartó Coulomb-kölcsönhatásnál, amit kihasználva 
azonnal közelítést alkalmazunk: a magot klasszikus go-
lyónak képzeljük, mely csupán vonzó potenciáljával hat 
az elektronokra. A feladatunk tehát 7 elektron együttes 
kvantumállapotának megadása vonzó Coulomb-poten-
ciálban. Ez a probléma már középiskolai kémiaórákon 
terítékre került. A különböző fő-, mellék- és mágneses 
kvantumszámú pályák betöltési sorrendjével, valamint a 
spinekre vonatkozó Hund-szabállyal mindenki találko-

�

Kapás Kornél doktori fokoztatát az ELTE-n 
szerezte a kvantum-színdinamika rácsszimu-
lációinak témakörében dr. Katz Sándor té-
mavezetése alatt, majd csatlakozott a HUN-
REN Wigner FK Elméleti Szilárdtestfizikai 
Osztályának, Legeza Örs által vezetett Erő-
sen Korrelált Rendszerek Kutatócsoportjá-
hoz, ahol többek között az erősen korrelált 
kvantummechanikai rendszerek dinamikájá-
nak szimulációival foglalkozik.

1. ábra. A nitrogénatom elektronszerkezetének középiskolában tanult 
konfigurációja. A valóságos kvantumállapotban egyéb konfigurációk, 
például (a) és (b) megjelenhetnek kis amplitúdóval, bár az alapállapot-
ban az (a) konfiguráció nem ad járulékot, hiszen teljes spinje eltér az 
alapállapotétól
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zott, melyek alapján az elektronfelhő szerkezete felírha-
tó (1. ábra). Ez az egyszerűnek tűnő kép az igen durva, 
ámbár hatékony Hartree–Fock-féle átlagtér-közelítés 
eredménye, ahol megköveteljük, hogy az egyes elektron-
pályák betöltöttsége pontosan 0 vagy 1 legyen.1 Az atom 
alapállapotát ebben a közelítésben variációs elv alapján 
lehet definiálni: az egyes elektronpályák alakját változ-
tatgatva keressük azt a konfigurációt, ahol az alapállapoti 
energia (várható) értéke a legkisebb, miközben a pályák 
betöltöttsége változatlan marad. Az így nyert megoldás-
sal azonban több probléma is van: ez az állapot nem meg-
oldása az időfüggetlen Schrödinger-egyenletnek, azaz 
nem sajátállapota a rendszer Hamilton-operátorának, 
ami azt jelenti, hogy az energia várható értéke az alapálla-
poti energiánál magasabb. Az úgynevezett kémiai pontos-
ságot, melynek elérésére szükség van ahhoz, hogy kémiai 
folyamatokat elfogadható pontossággal modellezzünk, 
általában 4 kJ/mol értékben definiálják.2 A Hartree–
Fock-elmélet hibája ennél sajnos nagyjából három nagy-
ságrenddel magasabb, ezért lényeges pontosításra szorul.

A Hartree–Fock-megoldásból kiindulva pontosabb 
elméletet építhetünk úgy, hogy az alapkonfiguráción túl 
megengedünk más betöltöttségű konfigurációkat is (1. 
ábra a és b konfiguráció). A legpontosabb leírást úgy nyer-
hetjük – rögzített atommagokat feltételezve –, ha minden 
lehetséges betöltöttségű konfigurációt megengedünk (ún. 
teljes konfigurációs kölcsönhatás, full-CI leírás), a sok
elektronos hullámfüggvényt pedig az összes konfiguráció 
lineáris szuperpozíciójaként keressük. Az így magunk elé 
tűzött számítási feladat azonban rettentő nehéz: ha az 
egyes elektronok által elfoglalható pályák végtelen számát 
valamely véges N értékre korlátozzuk is, az állapotterünk 
dimenziója 2N lesz, ami viszonylag hamar (N L 30–40) 
kezelhetetlenné válik akkor is, ha megmaradási tételek 
(elektronszám, spin) segítségével a megfelelő alterekre kor
látozzuk a számolást. Ha például n elektront tekintünk N 
pályán, úgy a megfelelő részecskeszámú altér dimenziója 
csupán (N

n   ), ez azonban még mindig nagyon gyorsan nő 
N és n függvényében. Ez a méltán hírhedt jelenség a „di-
menzionalitás átka”, melyet többféle úton igyekezett a 
fizikus- és kémikusközösség megkerülni vagy megolda
ni, így ma már számos módszer áll rendelkezésünkre, 
melyek közül ebben a cikkben az ún. mátrixszorzat-ál-
lapotok (MPS) kerülnek terítékre. Minden közelítő mód-
szerben közös, hogy a sokelektronos hullámfüggvényt a 
közvetlen felíráshoz képest lényegesen kevesebb paraméter 
segítségével próbáljuk jellemezni, több-kevesebb sikerrel.

Mátrixszorzat-állapotok
A fenti gondolatmenetét követve, a sokelektronos hul-
lámfüggvényt az alábbi alakban keressük

1 � Cikkünkben az egyszerűség kedvéért az azonos térbeli, de eltérő 
spinű elektronállapotokat külön pályának tekintjük.

2 �E z az érték részecskénként nagyságrendileg kBT energiabizonyta-
lanságnak felel meg, ahol kB a Boltzmann-állandó és T ≈ 300 K a 
szobahőmérséklet.
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ahol σi ∈ {0, 1} jelöli az i-edik pálya betöltöttségét  a 
|σ1 σ2  …  σN 〉 konfigurációban, és a Cσ1σ2  …  σN kifejtési együtt-
hatók (amplitúdók) jellemzik a hullámfüggvényt a 2N 
dimenziós állapottérben. Célunk ezen amplitúdók meg-
határozása az időfüggetlen Schrödinger-egyenlet (H|Ψ〉 
= E0 |Ψ〉) megoldásán keresztül, azaz megkeresve a H  
Hamilton-operátor |Ψ〉 alapállapotát, ahol
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Itt az i, j, k, l  indexek az egy elektron által elfoglal-
ható N lehetséges pályát jelölik. A ci

† és ci operátorok 
az elektronokat keltő és eltüntető operátorok, melyek 
(az ún. fermionikus előjeltől eltekintve) csupán a σi 
betöltöttséget változtatják 0-ról 1-re és viszont, és ez-
zel átmeneteket hoznak létre a különféle konfigurációk 
között. A Tij és Vijkl súlyok az elektronok kinetikus és 
potenciális energiáját jellemzik, őket az elektronpályák 
térbeli alakjának ismeretében lehet meghatározni.

A fenti megközelítés nehézségét a Cσ1σ2  …  σN együtt-
hatók nagy száma adja. Bár megmaradási tételekkel ez 
a  szám valamelyest csökkenthető, a releváns dimen-
zió még így is kezelhetetlenül gyorsan nő általában a 
megengedett pályák számával. A tenzorszorzat-állapot 
(TNS), és ezen belül a mátrixszorzat-állapot (MPS) 
megközelítések alapötlete, hogy a sokindexes Cσ1σ2  …  σN 
együtthatót kisebb mátrixok (tenzorok) szorzataként ír-
hatjuk fel. Alább látni fogjuk, hogy ez a felírás kiválóan 
alkalmas az állapot hatékony tömörítésére. Mátrixszor-
zat-állapotok esetén ez a
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1 2 1 1 2 2 1 1
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alakot jelenti, mely alakot a könnyebb megértés érdeké-
ben gráfok segítségével szoktunk ábrázolni, ahogy a 2a. 
ábrán is látható. A különféle sokindexes mennyiségeket 
(tenzorokat) egy síkidommal (körrel, téglalappal stb.) 
reprezentáljuk, az indexeket pedig a síkidomból kilógó 
vonalak (lábak) jelölik. Ha két tenzor lábait összekötjük, 
akkor az adott indexre összegzést írunk elő. A 2a. ábrát 
összevetve a (3) egyenlettel láthatjuk, hogy a három- (illet-
ve két végén két-) indexes A[i] tenzorok a vízszintes lábak-
nak megfelelő αi indexek szerint fel vannak összegezve.

A mátrixszorzat-állapot leírásának tömörítése abban 
áll, hogy az αi indexek lehetséges értékeit megszorít-
juk: αi ∈ {1, 2, ...., M}, ahol M az úgynevezett virtuális 
dimenzió, vagy „bond” dimenzió, így a Cσ1  …  σN együtt
hatót 2NM2 << 2N paraméterrel jellemeztük. A tömörítés 
mértékét az M dimenzió megválasztása határozza meg. 
Speciális esetként, amennyiben az N pályát a korábban 
bevezetett Hartree–Fock-elmélet alapján választottuk, 
a Hartree–Fock-megoldás egy M = 1 dimenziójú mát-
rixszorzattal, azaz egyszerű szorzatállapotként írható fel. 
Ebben az esetben a (3) formulában nincs felösszegzés, és 
a C mennyiség egyetlen konfigurációra lesz 1, a többire 
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zérus.3 M > 1 esetén azonban több konfiguráció amp-
litúdója – akár az összesé is – zérustól különböző lehet. 
A mátrixszorzat-állapot alakon túl az irodalomban más 
tenzorhálózat-állapotokat is bevezettek, példaként a 2c-d. 
ábrán az MPS kétdimenziós, illetve fagráf általánosítását 
mutatjuk [5].

Természetesen merül fel a kérdés, hogy mennyire 
hatékonyan tudunk így tömöríteni, azaz mekkora bond 
dimenziót (M-et) kell válasszunk a hullámfüggvény szá-
munkra elfogadható közelítéséhez? Feltéve egy pillanat-
ra, hogy ismerjük a Cσ1  …  σN együtthatókat, az indexeket 
két csoportra osztva (σ1 … σi | σi+1 … σN), meghatározhatjuk 
a C tenzornak a lineáris algebrából ismert szinguláris
érték-dekompozícióját,

		
min ( )

1 2 1 1

2

( ) ( )
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A λα ≥ 0 számok az ún. szinguláris értékek, míg az 
U és V tenzorok különböző α-hoz tartozó „oszlopai” az 
ún. szinguláris (egység-)vektorok. A C együttható kö-
zelíthető, ha a csökkenő sorrendbe rendezett λα soro-
zatnak csupán a legelső M tagját tartjuk meg, és ennek 
megfelelően a (4) formulában az összeg csak M tagból 
fog  állni. Az elhanyagolt λα > M súlyok négyzetösszegét 
csonkolási hibának nevezzük, ez jellemzi a közelítésünk 
pontosságát. Az U és V tenzorok további sorozatos de-
kompozíciójával és csonkolásával nyerhetjük a (3)-ban 
szereplő mátrixszorzat alakot. A dekompozíciók termé-
szetesen csonkolás nélkül is végrehajthatók, azaz a (3) 
felbontás precízen (csonkolási hiba nélkül) elvégezhető 
tetszőleges C együtthatóra, ha kellően nagy M-et válasz-
tunk.

Az adott pontossághoz szükséges M és a csonkolá-
si hiba összefüggésbe hozható a kvantuminformáció
elméletben alapvető jelentőségű Neumann-entrópiával, 
amit az elektronállapotok általunk vizsgált felosztására a

		
2 2ln( )S α α

α
λ λ= −∑ 	 (5)

formula definiál. Ez a mennyiség a sokelektron-hullám-
függvény kvantumos összefonódását jellemzi: a nagyobb 
entrópia erősebb összefonódást jelent, ami egyben 
szükségessé teszi nagyobb M dimenzió alkalmazását is. 
Ennek megfelelően a mátrixszorzat-közelítés akkor al-
kalmazható a leghatékonyabban, ha a sokelektron-hul-
lámfüggvény összefonódása kicsi.

Nem véletlen, hogy a sűrűségmátrixos renormálás-
csoport-módszert (DMRG), amely az egyik legkorábbi 
mátrixszorzat-állapot alapú alapállapot-közelítő algorit-
mus volt [3, 4], először egydimenziós spinlánc-modellek-
re vezették be, hiszen ezeknek a modelleknek az alapál-
lapota a kritikus pontoktól távol gyengén összefonódott. 
így már kis mátrixok (M ≈ 10–100) esetén példátlan 
pontosság volt elérhető gyakorlatilag tetszőlegesen hos�-
3 �A  nitrogénatom példájában a tankönyvi konfigurációra C1s2 2s2 2p3

↑↑↑ =1, 
az összes többire zérus.

szú láncok esetén. A módszert később általánosították 
két- és magasabb dimenziós modellekre, valamint a (2) 
általános alakban felírható kvantumkémiai és magfizi-
kai rendszerekre. Bár az eredmények ekkor is meggyő-
zőek, a szükséges tárolási és számítási erőforrások igen-
csak megnőnek. Rendkívül nagy, M > 104 mátrixokra 
lehet szükség, és az elérhető pályák, rácspontok száma is 
limitált, N < 100–200. Megmaradási tételek alkalmazása 
nélkül egy ekkora mátrixszorzat-állapotnak már a tárolá-
sához 400–600 GB tárhelyre van szükség, de megmara-
dási tételeket használva is hamar elhasználható 50–100 
GB, amihez  ezután hozzáadódik a Hamilton-operátor 
általában ennél is nagyobb tárhelyigénye.

Elektronpályák in situ optimalizálása
Láthattuk, hogy a mátrixszorzat-megközelítés tárolási 
és számítási költsége az M bond dimenzió függvénye. 
A hullámfüggvényünk azonban függ a pályák általunk 
választott sorrendjétől és maguknak a pályáknak a tér-
beli alakjától is. Ha például elektronok szabad gázát te-
kintjük, ahol a kölcsönhatás elhanyagolható, könnyen 
megadható az alapállapot: az elektronok az egyrészecs-
kés állóhullámpályák közül töltik be a legalacsonyabb 
energiájúakat. Ha tehát ezt az állapotot állóhullám-
pályákon írjuk fel, úgy már M = 1 (szorzatállapot) 
elegendő a térbeli dimenziótól függetlenül. Térben 
lokalizált pályákat választva azonban nagy, a térbeli 
dimenziótól és rendszermérettől is függő M választása 
szükséges.

Ha az elektronok közötti kölcsönhatást is számításba 
vesszük, a gyakorlatban nem tudjuk előre megmondani 

2. ábra. (a) A C együtthatótenzor (3) mátrixszorzat-felbontásának grafi-
kus megjelenítése. Az összekötött a) lábakra összegzést kell végezni. 
(b) A mátrixszorzat-felbontás alapjául szolgáló (4) szingulárisérték-de-
kompozíció grafikus megjelenítése. (c, d) Kétdimenziós tenzorhálózat 
(PEPS) és fa-tenzorhálózat (Tree-TNS) gráfja
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3. ábra. (a) A kétdimenziós rácsmodell sematikus ábrája. Az első és 
másodszomszéd ugrásokat is figyelembe vevő T–T′–V modellben a 
részecskék a rács élein és átlósan ugrálhatnak a rácspontok között, a 
szomszédos részecskék közötti kölcsönhatás erőssége V. (b) A számítási 
komplexitás (műveletszám) és az alapállapoti energia a lokalizált és op-
timális pályákon 10 × 10-es rácson [7]. Az adatpontok mellett feltüntet-
tük az M bond dimenzióértéket is. Hasonló pontosság eléréséhez három 
nagyságrenddel kevesebb művelet végrehajtása szükséges az optimali-
zált bázison, (c) Az entrópiaprofil változása a pályaoptimalizáció során 
[8]. Az egyes görbék különböző iterációkhoz tartoznak, melyek sorszá-
mát az ábra fejlécén mutatjuk

azokat a pályákat, amelyekkel az optimális mátrixszor-
zat-állapot leírása nyerhető. Molekulák esetén az eredeti 
variációs Hartree–Fock-módszerrel nyerhető pályák, 
melyeket gyakran alkalmazunk kiindulásként, várható-
an csak akkor lesznek megfelelőek, ha a tényleges alap
állapot közel van a Hartree–Fock-megoldáshoz (ún. 
egyreferenciás probléma). Ezek a problémák azonban 
más numerikus módszerek számára is jól hozzáférhetőek, 
így kevésbé érdekesek a tenzorhálózat-algoritmusok 
szempontjából. Abban az érdekes esetben, ha nincs a 
pályáknak egy előre jól meghatározható alapkonfigurá
ciója, akkor a mátrixszorzat-állapot leírás nagyban javít-
ható a pályák adaptív – az alapállapotot közelítő algorit-
mussal párhuzamosan végrehajtott – optimalizálásával 
[6–8]. Itt is többféle megközelítés közül választhatunk. 
Elképzelhető, hogy a kezdeti N pályánk összessége meg-
felelő, ezért az elektronpályák szuperpozícióját csak ezen 
az N dimenziós téren engedjük meg.

A pályák megváltoztatása ilyenkor technikailag azt 
jelenti, hogy a ci

† és ci operátorokból egy megfelelő Rij 
forgatásmátrixszal áttérünk egy új d i† = ∑i Rij ci

† és dj = 
∑i R*ij ci operátorcsaládra, majd a Tij és Vijkl együttható-
kat úgy transzformáljuk, hogy a (2) Hamilton-operátor 
változatlan maradjon. Ilyen átalakításokkal az (1)-ben 
felírt állapotnak csupán a mátrixszorzat-közelítését tud
juk javítani, hiszen csonkolás nélkül tetszőleges |Ψ〉 

hullámfüggvény felírható függetlenül a pályák fenti 
megválasztásától. Azonban már ezzel a korlátozott pá-
lyaoptimalizációval is gyakran komoly javulást tudunk 
elérni.

A 3. ábrán részecskék (elektronok) kétdimenziós 
rácsmodelljére kapott eredményeit mutatjuk, ahol a ré-
szecskék egy négyzetrács közeli rácspontjai között ugrál-
hatnak, miközben első szomszédok között taszító poten-
ciál lép fel. Ezen szilárdtestfizika által motivált modellen 
jól tesztelhető a módszer, miközben vizsgálható az opti-
mális pályák paraméterfüggése is. A Hamilton-operátor a 
legtömörebben akkor írható fel, ha a bázisként szolgáló 
pályákat a rácshelyekre lokalizáljuk, hiszen ekkor a Tij és 
Vijkl súlyok nagy része nullává válik. Mint korábban már 
említettük, elhanyagolható kölcsönhatás esetén az op-
timális pályák síkhullámok, miközben nagyon erős köl-
csönhatás és félig töltött rács esetén a részecskék sakk
táblaszerű elrendezést preferálnak lokalizált pályákkal. 
Az érdekes tartomány ezért épp a közepesen erős köl-
csönhatás esete, amit a 3c. ábrán is vizsgálunk. Az alap
állapot összefonódási entrópiaprofilja az eredeti lokali-
zált pályákra igen magas. A pályaoptimalizáció során e 
profil alatti területet minimalizáljuk, és mint láthatjuk, 
ez igen hatékonyan megtehető: a görbe maximuma a 
negyedére, a görbe alatti terület kevesebb mint a tize-
dére csökkenthető az ábrán mutatott esetben. Meg kell 
jegyeznünk viszont, hogy a lokalizált bázistól való eltérés 
miatt a Tij  és Vijkl súlyok korábban zérus elemei immár vé-
ges értéket vehetnek fel, ezért a szemfüles olvasóban fel-
merülhet a kérdés, hogy a számítási igény szempontjából 
nem veszítjük-e el a vámon azt, amit a réven (azaz az M 
bond dimenzió esetleges csökkentésével) nyertünk. A 
3b. ábrán láthatjuk, hogy a kétdimenziós rácsmodellünk-
nél határozottan nem ez a helyzet: 10 × 10-es rács esetén 
az optimális bázisban már M = 64 mellett alacsonyabb 
alapállapoti energiát kapunk, mint a lokalizált bázisban 
M = 3096 mellett, miközben a szükséges aritmetikai mű-
veletek száma nagyjából három nagyságrenddel kisebb 
az előbbi esetben. Ehhez még azt is érdemes hozzáten-
ni, hogy a „sűrűbb” Tij és Vijkl hatékonyabb GPU-alapú 
párhuzamosítást tesz lehetővé, így már közepes bond 
dimenziók (M L 2000–3000) mellett is teljesen kiaknáz-
ható egy legújabb, AI-alkalmazásokra optimalizált nagy 
teljesítményű szuperszámítógép-nódus [7]. Az optimali-
zált bázis végeredményben akár 4–5 nagyságrenddel is 
gyorsabb számítást tesz lehetővé. További fontos észre-
vétel, hogy az összefonódást mérő entrópia igen robusz-
tus mennyiség, ezért a pályaoptimalizációt általában ele-
gendő alacsony M mellett végezni, így ennek számítási 
igénye szintén mérsékelt marad.

A fent leírt pályaoptimalizáció egyik nagy hátránya, 
hogy nem ad lehetőséget az eredeti N pálya által kifeszí-
tett altér elhagyására, pedig a lehetséges pályák végtelen 
dimenziós Hilbert-teret alkotnak. A DMRG-t más algo-
ritmusokkal kombinálva végezhető pályaoptimalizáció 
általánosabb módon úgy is, hogy a pályák keverése során 
megengedjük az N dimenziós aktív téren kívüli pályá-
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kat is. Ez elvben lehetővé teszi a nem optimális kezdeti 
pályaválasztásunk javítását is. A DMRG-SCF módszer-
ben az alapállapotot MPS segítségével közelítjük, majd 
a hullámfüggvényből származtatott, egy- és kétrészecs-
kés potenciálok (az elektronfelhő önkonzisztens terei) 
alapján kísérelünk meg alkalmasabb pályákat javasolni 
[9]. Egy másik lehetőség, hogy a korábbi N pálya mel-
lett további pályákat is figyelembe veszünk, azonban 
csak korlátozott módon: ezeken a kiegészítő pályákon 
az alapkonfigurációhoz képest csak egy vagy két eltérést 
engedünk meg összesen [10]. Az eredeti, N pályás láncot 
az így kapott ún. korlátozott aktív térrel kiegészítve le
hetővé válik a gyengébb, de fontos dinamikus korrelá
ciók figyelembevétele. Az előbb bemutatott módszer és 
az adaptív módustranszformáció ötvözése egy természe-
tes általánosítás, amihez további algoritmikus megoldá-
sokon tervezünk dolgozni a jövőben.

Cikkünkben röviden áttekintettük a kvantumrend
szerek klasszikus szimulációját, ezen belül is a mát-
rixszorzat-állapotokon alapuló módszereket. Mivel a 
kvantumállapotok összefonódás-alapú tömörítésének 
hatékonysága éppen a vizsgált állapot kvantumossá-
gától függ, ezek a módszerek nem csupán hatékony 
numerikus eszközök, hanem betekintést nyújtanak az 
állapotban tárolt kvantuminformáció struktúrájába 
is. A részrendszerek összefonódása erősen függ azok 
megválasztásától, és ez a mátrixszorzat-állapot leírá-
sának hatékonyságát is drasztikusan befolyásolja. A 
kétdimenziós rácsmodell példáján láthattuk, hogy egy 

sokrészecskés állapot esetén a pályák optimális megvá-
lasztása több nagyságrenddel csökkentette a szükséges 
számítási erőforrásokat.

Hála a fizikus- és kémikusközösség elszánt kutató-
inak, a klasszikus algoritmusaink folyamatosan fejlőd-
nek, így képezve erős versenytársat a szintén rohamosan 
fejlődő kvantumelven működő hardvereknek. Hiszünk 
abban, hogy ez a verseny inspirációként szolgál mind a 
klasszikus, mind a kvantumos megoldások fejlesztőinek, 
továbbá lehetővé teszi, hogy feltérképezzük az egyes 
megoldások helyes alkalmazási területeit, valamint utat 
nyithat az esetleges hibrid kvantum-klasszikus megoldá-
sok felé is.
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 Gyenis András a Colorádói Boulder egyetem 
adjunktusa. a Bme-n diplomázott mér-
nök-fizikusként 2010-ben, majd a Princeton 
egyetemen doktorált 2016-ban, ahol topo-
logikus és szupravezető anyagokat tanul-
mányozott pásztázó alagútmikroszkóppal. 
azóta szupravezető és félvezető kvantumos 
áramkörök tervezésével, modellezésével és 
mérésével foglalkozik. a fő kutatási témája 
a védett áramkörök létrehozása, vezérlése és 
új nemlineáris áramköri elemek kifejlesztése.

Bevezetés

az elektromos áramkörök mára megkerülhetetlenek a 
mindennapokban. Bár a klasszikus maxwell-egyenletek 
segítségével az áramkörök többségét nagy pontosság-

gal meg tudjuk tervezni, amikor méretük megközelíti a 
 nanométeres skálát, a kvantumos effektusok fontossá 
válnak, és módosítanunk kell a klasszikus modellüket. 
Például, a tranzisztorok vagy a flashmemóriák tervezé-
sében a kvantummechanikai alagúteffektus fontos 
sze repet játszik, ami befolyásolja az elektronikai alko-
tóelemek szigetelő anyagának a megválasztását és az 
elektródák geometriai kialakítását. ezzel szemben van 
egy teljesen más típusú elektronikus rendszer, a szupra-
vezető áramkörök, ahol a kvantumos effektusok nem-
csak kisebb módosításokként jelennek meg, hanem 
alapjaiban változtatják meg az áramkörök tulajdonsá-
gait. ebben a cikkben ezeket a kvantumáramköröket 
tárgyaljuk, amelyek mint tervezhető és hangolható mes-
terséges atomok a szupravezető kvantumszámítógépek 
[1] alap jául szolgálnak.

https://arxiv.org/abs/2406.03449
https://arxiv.org/abs/2503.20700
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A mechanikai rezgőmozgás klasszikus és 
kvantumos fizikája

Mielőtt rátérnénk az elektromos áramkörök kvantum
fizikai leírására, érdemes felidézni egy mechanikai pél-
dát: az egydimenziós harmonikus oszcillátort. Ebben 
a rendszerben egy rugóhoz erősített tömegpont végez 
harmonikus rezgőmozgást egyensúlyi helyzete körül. 
A rendszer teljes energiája – a Hamilton-függvénye – a 
tömegpont kinetikus és potenciális energiájából adódik 
össze:

2
21

( )
2 2

.
p

H x, p kx
m

= +

Itt k a rugóállandó, m a részecske tömege, p az im-
pulzusa és x a helyének koordinátája. Fontos megje-
gyezni, hogy a helykoordináta és az impulzus konju-
gált fizikai mennyiségek, mivel {x, p} = 1, ahol {x, p} = 
(∂x/∂x)∙(∂p/∂p) – (∂p/∂x)∙(∂x/∂p) a Poisson-zárójelet 
jelöli. A mozgás dinamikáját a t idő függvényében a 
Hamilton-egyenletek megoldásával kapjuk meg, ami egy 
szinuszos rezgőmozgáshoz vezet: x(t) = x0 cos(ωt + φ), 
ahol  = /k mω  a körfrekvencia, x0 a mozgás amplitúdó-
ja, φ pedig a fázisa.

A kvantumvilágban a harmonikus oszcillátor, ahogy 
számtalan más rendszer a nanométeres skálán, kvantált 
tulajdonságokat mutat. Ez például abban nyilvánul meg, 
hogy amikor az oszcillátor energiáját megmérjük, csak 
bizonyos diszkrét energiaértékeket kaphatunk. Ehhez 
úgy jutunk el, hogy a fizikai mennyiségeket, például az 
energiát, az impulzust vagy a helykoordinátát, operáto-
rokkal írjuk le, és megköveteljük, hogy a mérhető fizikai 
mennyiségek csak olyan értékeket vegyenek fel, amelyek 

sajátértekei a megfelelő operátoroknak. Emellett a rend-
szer állapotát egy hullámfüggvény képviseli, ami annak 
a valószínűség-eloszlását írja le, hogy például a részecske 
egy adott helyen található, vagy egy adott impulzussal 
rendelkezik. Fontos megjegyezni, hogy amikor a kon-
jugált fizikai mennyiségeket lekepézzük operátorokra, 
ezek az operátok nem cserélhetőek fel. Matematikailag 
az operátorok definiálásakor a klasszikus Poisson-záró
jelekre vonatkozó összefüggéseket a kvantumos felcse-
rélhetőségi relációkra váltjuk:

		 { } [ ]1
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→
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ahol ħ a redukált Planck-állandó. Az egyik leghíresebb 
példa nem felcserélhető operátorpárra a helykoordiná-
ta és az impulzus, amelyek teljesítik a Heisenberg-féle 
felcserélési relációt, [x̂, p̂] = x̂ p̂ – p̂ x̂ = iħ. A kvantum
rendszerek leírásának ezt a megközelítését, ahol a klasszi-
kus fizikai mennyiségeket nem felcserélhető kvantumos 
operátorokkal helyettesítjük, kanonikus kvantálásnak 
nevezzük.

Visszatérve a harmonikus oszcillátor példájára, a ka-
nonikus kvantálással a rendszert a Hamilton-operátor 
írja le:

		
2
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p̂ˆ ˆ .H kx
m

= + 	

Ahhoz, hogy megkapjuk a rendszer kvantált ener-
gia-sajátállapotait, a Hamilton-operátor sajátértekeit kell 
megkeresnünk. Szerencsére ez a feladat analitikusan meg-
oldható (ahogy az minden bevezető kvantummechanika- 
tankönyvben szerepel), ami arra vezet, hogy az energia 
megengedett En értékei lineárisan nőnek az n gerjesztési 
szám függvényében:

1. ábra. a) Az LC rezgőkör kapcsolási rajza és az energia-sajátállapotok hullámfüggvényei a V(ϕ) négyzetes potenciálvölgyben. Az energiaállapotok 
egyenlő távolságra vannak egymástól (piros nyilak). b) A transzmon áramkör kapcsolási rajza és az energia-sajátállapotok hullámfüggvényei a V(ϕ) 
= –EJ cos(2π ϕ/ϕ0) potenciálvölgyben. Az alap- és az első gerjesztett állapot reprezentál egy qubitet (piros négyzet). c) A Josephson-átmenet sema-
tikus rajza, ahol Cooper-párok (2e) alagutaznak a szupravezető elektródák között egy szigetelőrétegen keresztül. d) A transzmon hullámfüggvényei 
töltésreprezentációban. e) Pásztázó elektronmikroszkópos felvétel egy Josephson-átmenetről, amely két oxidált alumínium elektróda között alakul 
ki (piros kör). f ) Optikai mikroszkópfelvétel egy transzmon qubitről [4], ahol a piros kör jelzi a Josephson-átmenetet
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A szupravezető harmonikus LC rezgőkör
Rezgőmozgás nemcsak mechanikai rendszerekben van 
jelen, hanem elektromos áramkörökben is. Az alapvető 
példa erre a párhuzamos kapcsolású LC rezgőkör dina-
mikája, ahol egy kondenzátor és egy tekercs periodiku-
san energiát cserél egymással (1a. ábra). A klasszikus 
rendszer energiája (Hamilton-függvénye) elektromos és 
mágneses energiából áll:

		 ( )
2 2

,
2 2
Q

H ,Q  
C L

φφ = + 	

ahol C a kondenzátor kapacitása, L a tekercs indukti
vitása, Q az elektromos töltés a kondenzátoron és ϕ a 
tekercsben tárolt mágneses fluxus. Az LC rezgőkör 
dinamikája analóg a mechanikai oszcillátoréval: az elekt-
romos töltés és a mágneses fluxus nagysága harmoniku-
san rezeg az áramkörben, mint ahogy a rugóhoz erősített 
részecske pozíciója és impulzusa is szinuszosan változik. 
Ez matematikailag abban nyilvánul meg, hogy a mecha-
nikus és az elektromos oszcillátor Hamilton-függvényei 
lekepézhetőek egymásba a következő helyettesítéssel: 
p ↔ Q , x ↔ ϕ, m ↔ C, k ↔ 1/L. Továbbá látható, hogy az 
elektromos töltés és a mágneses fluxus konjugált fizikai 
mennyiségek, mivel {ϕ,  Q} = 1.

A mechanikus és elektromos oszcillátorok hasonlósá-
ga arra motivál, hogy egy kvantumos LC rezgőkörben a 
fluxus és a töltés mennyiségeket is operátorokkal írjuk le, 
melyek ugyanolyan felcserélési relációt követnek, mint 
egy részecske helyének és impulzusának operátora [2]. 
Mára számtalan kísérleti eredmény bizonyítja, hogy ez 
valóban a helyes kanonikus kvantálása a kvantumáram-
köröknek, és a töltés- és a fluxusoperátorok kielégítik a 
következő felcserélési relációt:

		 [ ],Q̂ iˆ .φ =  	

Ezen a ponton egy fontos kérdés vetődik fel. Hogyan 
tudunk kísérletileg kvantumos LC áramkört építeni? Ez 
elsőre lehetetlen feladatnak tűnik. A kondenzátor és a 
tekercs is megszámlálhatatlan sok atomból épül fel, ame-
lyek között a globális fáziskoherencia hiányzik. Enélkül 
pedig a kvantumos effektusok nem terjednek ki az egész 
áramkörre, és a töltések oszcillációja csupán klasszikus 
jelenség marad. Szerencsére, a szupravezető anyagok 
megoldást kínálnak erre a problémára. Bár a szupra
vezetők leginkább arról híresek, hogy ellenállás nélkül 
vezetik az elektromos áramot, van egy másik fontos tu-
lajdonságuk: egy szupravezető anyagdarab vezetést adó 
elektronjai egyetlen makroszkopikus hullámfüggvén�-
nyel írhatók le. Ez a globális hullámfüggvény biztosítja, 
hogy ha szupravezetőből építünk egy LC oszcillátort, és 
lehűtjük alacsony hőmérsékletre, akkor a fáziskoheren-
cia az egész áramkörre kiterjed. Ennek következtében 
a rezgőkör kvantumos effektusokat mutat, így például 

a  megengedett energiaértékei egy ekvidisztáns spekt
rumot adnak (1a. ábra). Mivel nemcsak az áram, hanem az 
elektromágneses mező is oszcillál az LC áramkörben, az 
energiaértékek közötti gerjesztéseket fotonoknak hívjuk, 
amelyek az elektromágneses sugárzás elemi részecskéi.

A transzmon: egy anharmonikus 
LC rezgőkör

Bár a szupravezető LC áramkörnek kvantált energia-
szintjei vannak, ez nem elég ahhoz, hogy kvantumszá
mítógéphez kvantumbitet (qubitet) építhessünk belőle. 
A  qubit ugyanis vezérelhető kétállapotú kvantumrend-
szer kell legyen. A harmonikus rezgőkörben végtelen 
számú energia-sajátállapot van, ráadásul mindegyik 
energiaszint ugyanakkora távolságra van a szomszéd
jaitól, ezért nem tudunk elkülöníteni csupán két ener-
giaszintet. Kézenfekvő megoldás erre, ha a rezgőkört 
anharmonikussá tesszük. A mechanikai oszcillátornál 
ehhez olyan rugó kell, melynek rugóállandója a meg
nyújtásától függően változik. Hasonlóan, az elektromos 
LC rezgőkörben nemlineáris tekercsre van szükség, 
amelynek induktivitása a benne tárolt fluxustól függ. Ha 
ez megvan, a klasszikus rezgés torzul az eredeti tisztán 
szinuszos mozgáshoz képest, a kvantumos esetben pedig 
az energiaértékek már nem egyenlő távolságra lesznek 
egymástól (1b. ábra). Így a végtelen számú állapot közül 
már ki tudunk választani két tetszőleges energiaszintet, 
amelyek egy qubit 0 és 1 állapotát adják. A legegyszerűbb 
megoldás az alapállapotot a qubit 0 állapotának, az első 
gerjesztett állapotot a qubit 1 állapotának tekinteni.

Hogyan tudunk nemlineáris szupravezető tekercset 
készíteni? Erre a választ egy szupravezetőjelenség szol-
gáltatja: a Josephson-effektus. Ez akkor lép fel, amikor 
két szupravezető elektródát egy néhány nanométer szé-
lességű szigetelőréteg választ el egymástól, és a lecsengő 
szupravezető-hullámfüggvények átfedésbe kerülnek a 
szigetelőrétegben (1c., e. ábra). Ekkor a Cooper-párok 
alagutazása révén szupravezető áram folyik a két elekt
róda között, a szigetelőrétegen pedig feszültség lép fel. 
Ez  a feszültség arányos az áram időbeli változásával, 
éppen úgy, ahogy egy tekercs feszültsége a rajta átfolyó 
áram időbeli deriváltjával arányos. Ezt a szupraveze-
tő–szigetelő–szupravezető rendszert tehát egy effektív 
tekercsként kezelhetjük, amit Josephson-átmenetnek 
nevezünk. Erről az áramköri elemről megmutatható, 
hogy az induktivitása nemlineáris a benne tárolt ϕ effek-
tív mágneses fluxus függvényében, és a tekercs energiája 
E  = –EJ cos(2π ϕ/ϕ0), ahol EJ a Josephson-energia, ami 
a  Josephson-átmenet anyagától és geometriájától függ, 
és ϕ0 a mágneses fluxuskvantum.

Amikor egy ilyen Josephson-átmenetet és egy szup-
ravezető kondenzátort párhuzamosan kapcsolunk, 
anharmonikus rezgőkört kapunk, amit transzmon 
áramkörnek hívnak [3, 4]. Ezzel a rendszer Hamil-
ton-operátora:



Gyenis András: Az áramkörök kvantálása és a szupravezető kvantumszámítógépek 267

		
2

0cos(2 / ),
2 J

ˆ Q
H  E

ˆ ˆ
C

φ φ= − π 	

ahol – a mechanikai példát követve – az első tagot a 
„kinetikus”, míg a második tagot a „potenciális” ener-
giaként tekinthetjük. Az áramkör kvantált energia-
szintjeit, potenciális energiáját és az állapotok hullám-
függvényeit az 1b. ábra, míg a transzmon áramkör egy 
legyártott példányát az 1f. ábra mutatja [4]. Látható, 
hogy a rendszer enegiaértékei nem egyenletesen oszla-
nak el, mivel a koszínuszos potenciál eltér a négyzetes 
függvénytől.

Érdemes megjegyezni, hogy a hullámfüggvénye-
ket leírhatjuk akár fluxus-, akár töltésreprezentációban, 
ahogy egy részecske állapota is pozíció- és impulzus
reprezentációban is ábrázolható. A hullámfüggvények 
a  töltésreprezentációban fontos fizikai intuícióval szol
gálnak: a transzmon energiaállapotai különböző töl-
tésoszcillációk koherens szuperpozíciói (1d. ábra). Pél-
dául az alap- és az első gerjesztett állapot esetén néhány 
Cooper-pár oszcillál az áramkörben úgy, hogy az alap
állapotban szimmetrikus, a gerjesztett állapotban pedig 
antiszimmetrikus amplitúdóval rezegnek. Mivel ez a kap
csolás egy egyszerű áramkör, amit mára a legtöbb tiszta-
szobában gyártani lehet, a transzmon az egyik legelter-
jedtebb szupravezető qubit mind a külföldi, mind a hazai 
egyetemeken [5], kutatóintézetekben és a kvantumos 
iparban. Például a legígéretesebb szupravezető kvantum
processzorok, amelyeket a Google, az IBM vagy az Ama-
zon gyárt, mind transzmon áramkörökből épülnek fel.

A fluxónium: az áramok szuperpozíciója
A 2010-es évek hajnalán kifejlesztettek egy másik, sokat 
ígérő szupravezető qubitfajtát, a fluxóniumot [6]. Itt a Jo-
sephson-átmenettel nemcsak egy kondenzátort, hanem 
egy (hagyományos, lineáris) tekercset is párhuzamosan 
kapcsoltak. Mivel ebben az áramkörben a lineáris te-
kercs is energiát tárol, a rendszer Hamilton-operátorát 
a következőképpen tudjuk leírni a (ha nincs külső mág-
neses tér):
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Itt az áramkör potenciális energiája (az utolsó két 
tag) lényegesen különbözik a transzmonnál látottól: 
több potenciálminimum is van, ahol a hullámfüggvények 
lokalizálódhatnak (2. ábra). Tehát a fluxónium nemcsak 
egy anharmonikus rezgőkör, hanem egy gazdag energia
struktúrával rendelkező mesterséges atom, ahol az 
atom potenciális energiáját az induktivitások, valamint 
kinetikus energiáját a kapacitás értéke határozza meg. 
Megmutatható, hogy a különböző potenciálvölgyekben 
található állapotok fizikailag különböző nagyságú mak
roszkopikus köráramokat jelentenek a rendszerben. 
Ennek egyik jelentősége, hogy a fluxóniumban a qu-
bitállapotok különböző makroszkopikus áramokhoz 
tartoznak. Ezek a makroszkopikus, de mégiscsak kvan-
tumos áramok jobban ellenállnak a lokális zajnak, mint 
más kvantumhardverek, így kevesebb hibát várunk az 
általuk megvalósított fluxóniumqubitekben, ami ígére-
tes a kvantumszámítógépek számára.

3. ábra. a) Optikai mikroszkópfelvétel a védett 0–π áramkörről, és a kapcsolási rajza [9]. JJ: Josephson-átmenet, JJA: tekercs. b) Az áramkör kétdi-
menziós potenciális energiája, c) az alap- és d) az első gerjesztett állapotának hullámfüggvényei, amelyek két különböző potenciálvölgyben lokalizá-
lódnak, így köztük az átmenet tiltott

2. ábra. A fluxónium áramkör energia-sajátállapotaihoz tartozó hullám-
függvények külső mágneses tér eseten. A szürke görbe mutatja a poten-
ciális energiát. A betétábra mutatja a fluxónium kapcsolási rajzát
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Magasabb dimenziójú és védett 
áramkörök

Eddig csak a legegyszerűbb áramköröket tárgyaltuk, 
ahol a rendszereknek csak egy szabadsági fokuk volt (a 
Hamilton-operátor egyetlen töltés-fluxus konjugált párt 
tartalmazott), így ezek az áramkörök egydimenziós mes-
terséges atomoknak tekinthetőek. Ha nemcsak párhu-
zamosan, hanem sorosan is kapcsoljuk a szupravezető 
elemeket, több szabadsági fokú (magasabb dimenziós) 
kvantumáramköröket is tervezhetünk. Ahogy számtalan 
kísérleti eredmény bizonyítja, ezeknek az összetettebb 
rendszereknek a kvantálása is a kanonikus kvantálást 
követi. Az általános elméleti eljárás a kvantummechani-
kai leírásukra a következő [7]. Először definiáljuk a töltést 
és az általánosított fluxus mennyiségeket az áramkör 
különböző részein, mint az áram és a feszültség idő
beli integráljait. Ezt követően megkeressük a kanonikus 
töltés-fluxus párokat az áramkörben, amiket az áramkör 
geometriája és gráfja határoz meg, és ezt egy ún. szimp-
lektikus mátrixszal írjuk le. Ezt követően a töltéseket 
és fluxusokat operátorokkal helyettesítjük, amelyek fel
cserélési összefüggéseket elégítenek ki. Végül felírjuk az 
áramkör Hamilton-operátorát, aminek sajátértékei adják 
az áramkör lehetséges energiaértékeit, sajátfüggvényei a 
hullámfüggvényeket.

Mivel áramköri elemeket megszámlálhatatlan kom
binációban tudunk összekapcsolni, rengeteg magas 
dimenziójú mesterséges atomot lehet tervezni szupra-
vezető áramkörökből. A kvantumszámítógépek szem-
pontjából egy különösen fontos irány az ún. védett 
áramkörök tervezése [8]. Ezen áramkörökben egyes sa-
játállapotok ellenállóak a környezeti zajjal szemben, így 
ezekkel hosszú élettartamú qubitet tervezhetünk, ha-
sonlóan a metastabil atomi állapotokhoz. Például az ún. 
0–π qubitben [9] a kondenzátorok, a lineáris és nemline-
áris induktivitások úgy kombinálódnak, hogy egy kettős 
potenciálvölgy jön létre, ahol a qubit állapotai stabilan 
lokalizálódhatnak (3. ábra).

A kvantumáramkörök elektrodinamikája 
és a kvantumszimuláció

Amellett, hogy az áramköröknek kvantált energiaálla-
potaik vannak, még sok más kvantumos effektust is mu-
tatnak, így kvantumszimulátorok alapjául szolgálhatnak 
[10]. Például a fotonok és atomok közötti kölcsönhatás, 
a kvantumelektrodinamika is nagy pontossággal tanul-
mányozható ezen kapcsolásokkal [11]. Amikor harmo-
nikus és anharmonikus áramköröket kapcsolunk össze, 
az LC áramkör gerjesztései – a fotonok – az anharmoni-
kus áramkör (a qubit) atomi állapotaival hatnak kölcsön. 
Ekkor, ha az LC áramkör rezonanciafrekvenciája meg-

egyezik a qubit energiaátmenetével, a foton energiát tud 
cserélni a qubittel. Ez a kvantumszámítógépek nyelvén 
egy logikai műveletnek felel meg, és a kölcsönhatás ide-
jét változtatva a qubit 0 és 1 állapotainak tetszőleges 
szuperpozícióját eredményezi. Ha a fotonok energiája 
a qubit átmenetének energiájától eltér, a kölcsönhatás 
ahhoz vezet, hogy a fotonok frekvenciája kissé meg
változik attól függően, hogy a qubit a 0 vagy 1 állapot-
ban van, ami a qubitek kiolvasásának az alapja. Emellett 
nagyszámú összekapcsolt áramkörrel szilárdtestfizikai 
rácsmodellek szimulálhatók, ami pl. a Mott-szigetelők 
[12] vagy a hiperbolikus görbült térben mozgó fotonok 
kísérleti vizsgálatát is lehetővé teszi [13] – hogy csak 
néhány példát említsünk a kvantumáramkörök sokrétű 
alkalmazásai közül.
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A kvantumos gépi tanulás napjaink rohamosan fejlődő és 
növekvő tudományterülete, amely ötvözi a kvantumin-
formatika és a klasszikus gépi tanulás elveit összetett 
problémák megoldásának reményében. A kvantumszá-
mítás két újszerű erőforrással bővíti a matematikai prob-
lémák megoldására alkalmazható eszközök tárát. A szu-
perpozíció és az összefonódás lehetővé teszik a 
kvantumszámítógépek számára, hogy olyan módon dol-
gozzák fel az információkat, amely alapvetően különbö-
zik a klasszikus számítógépektől [1, 2]. A kvantumos gépi 
tanulás területén tevékenykedő kutatók ezen erőforrások 
legjobb felhasználási módszerein munkálkodnak a gépi 
tanulási algoritmusok teljesítményének javítása érdeké-
ben. A klasszikus gépi tanulás területén alkalmazott 
algoritmusokban nagy komplexitású matematikai mo-
dellek hiperparamétereit (más néven súlyait) azzal a cél-
lal optimalizáljuk, hogy pontos előrejelzéseket kapjunk 
vagy elemeket osztályozzunk. A kvantumos gépi tanulás 
során a matematikai modellekben kvantumos erőforrá-
sokat alkalmaznak olyan célfüggvények kiértékelése 
végett, melyeket klasszikus módszerekkel túl sok erő
forrásba (pl. időbe) kerülne kiértékelni, ahogy ezt az 
1. ábra szemlélteti.

A kvantummechanika egyedülálló tulajdonságait ki-
használva hatékonnyá válhat ezen célfüggvények kiérté-

kelése. A szuperpozíció (azaz a kvantumbitek 0 és 1 álla-
potainak egyidejű megnyilvánulása) és az összefonódás 
(azaz a kvantumbitek között fellépő kvantummechani-
kai korrelációk) lehetőséget nyújtanak az információ 
tárolására alkalmazott erőforrások exponenciális mér-
tékű tömörítésére, jelentősen megnövelve kezelésük ha-
tékonyságát. A klasszikus gépi tanulás folyamata általá-
ban a neurális hálózatok súlyainak beállítását jelenti 
annak érdekében, hogy minimalizáljuk a matematikai 
modell és a tanító adatok közötti eltéréseket. E folyamat 
analógiájaként a kvantumos gépi tanulás során a tanítási 
folyamat a kvantumprogramot leíró kvantumáramkör-
ben lévő kapuműveletek [3] finomhangolását tűzi ki cé-
lul. A kvantumáramkörökben lévő kapuműveletek az 
egyes kvantumbiteken (azaz egyszerre egy kvantum
biten) vagy kvantumbitpárokon hatnak. Ez utóbbi két
kvantumbites műveletek kvantumos korrelációk létreho-
zására alkalmazhatóak a kvantumbitek között.

Ahogy azt a 2. ábra szemlélteti, az egykvantumbites 
kapuműveletek a kvantumbitek olyan transzformációját 
hajtják végre, mely a kvantumbitek állapotának szemlél-
tetésére alkalmazott egységnyi háromdimenziós vektor 
elfordításával írható le. A kvantumáramkör tanítása eb-
ben a környezetben a kvantumkapuk forgatási szögeinek 
beállítását jelenti annak érdekében, hogy a kvantum
áramkör által generált kvantumállapotból kinyerhető 
mennyiségek közel kerüljenek a tanítási adathalmaz 
megfelelő elemeihez. A kvantumkapuk forgatási szögei
nek beállítási folyamata hasonló a klasszikus neurális há-
lózat súlyainak tanításához.

A kvantumos gépi tanulásos modellek közül a variáci-
ós sajátérték-megoldót (variational quantum eigensolver, 
VQE) jelentős érdeklődés övezte az elmúlt két évtized-
ben. A VQE a variációs elvet használja kvantumos rend-
szerek alapállapoti energiájának meghatározására, amely 

Klasszikus
optimalizáció

θ

θ

Kvantumhardver
A gépi tanulás
célfüggvénye

1. ábra. A kvantumos gépi tanulás során kvantumos erőforrásokat al-
kalmazunk a gépi tanulás célfüggvényének hatékony kiértékeléséhez. A 
kvantumos eszköz paramétereit klasszikus számítási eszközökkel opti-
malizáljuk

Ψ

2. ábra. Bal oldal: négy kvantumbites kvantumáramkör. A Ψ kvantum
állapotot alkotó négy kvantumbitet egykvantumbites kapuk (lila négy-
zetek) és kétkvantumbites kapuk (kék) transzformálják balról jobbra 
terjedő sorrendben. Jobb oldal: a klasszikus bit kvantumos általánosítá-
sa. A kvantumbit a 0 és 1 állapot tetszőleges szuperpozícióját felveheti, 
mely állapot egy egységnyi sugarú gömb (Bloch-gömb) felületére muta-
tó vektorral szemléltethető
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a kvantumkémia és az anyagfizika alapvető problémája. 
A probléma megoldására alkalmazott hagyományos 
módszerek a pontosság és a hatékonyság korlátaival ke-
rülnek szembe, mivel a meghatározni kívánt kvantum
állapotok kezelése exponenciálisan növekvő klasszikus 
számítási kapacitást igényel. A VQE algoritmus megol-
dást nyújthat e korlátok leküzdéséhez, ezért ez az egyik 
legígéretesebb alkalmazás a kvantumszámítással járó 
előny demonstrálására, akár zajosan működő hardveren 
is. Ahogy a neve is sugallja, a VQE célja egy olyan kvan-
tumrendszer alapállapotának közelítése, amelyet a klas�-
szikus hardver segítségével nehéz implementálni. Ennek 
során felső korlátot adhatunk az alapállapoti energiára, 
ideális esetben nagyon közel kerülve az egzakt megoldás-
hoz. A gyakorlati megvalósításban a kvantumállapot egy 
kvantumáramkörrel állítható elő, és a VQE algoritmus a 
kvantumáramkör megfelelő paramétereinek beállítását 
tűzi ki célul egy optimalizációs folyamat árán. Az opti-
malizálási folyamat során a kvantumáramkör paramé-
tereit iteratív módon frissítjük a konvergencia beálltáig. 
Ezért a klasszikus optimalizálási algoritmus kiválasztása 
döntő szerepet játszik az algoritmus eredményességében. 
A VQE lehetséges alkalmazási területei nagyon szerte-
ágazóak, beleértve a gyógyszerkutatást, anyagkutatást, 
kémiához köthető mérnöki tervező kutatásokat, kvantu-
mos optimalizációt és egyéb kvantumos gépi tanulásos 
alkalmazásokat.

A VQE-hez hasonló kvantumalgoritmusok tekinte-
tében a kvantumos előny demonstrálásának érdekében 
az irodalom négy elsődleges kutatási területet emel ki. 
Ezek célja az i) optimális mérési technikák kifejlesztése, 
ii) párhuzamosítási módszerek létrehozása több kvan-
tumszámítógép bevonásával, iii) a tanítás során fellépő 
eltűnő gradiensekkel kapcsolatos lehetséges kihívások 
kezelése és iv) a hibacsökkentési módszerek feltárása, 
melyre az angol nyelvű irodalomban error mitigation 
néven hivatkoznak. 

Saját kutatási munkánkban a iii) kutatási terület cél-
kitűzéseivel foglalkoztunk, amely az angol nyelvű iro
dalomban barren plateau-ként emlegetett, azaz a lapos 
paramétertér problémájának megoldását célozza meg. A 
lapos paramétertér annak a jelenségnek a következmé-
nye, hogy a kvantumos modellben a kvantumbitek 
számának növekedésével exponenciálisan csökken a 
célfüggvény gradiense. A lapos paraméterterületeket 
mutató célfüggvények esetében exponenciálisan sok 
mérésre lehet szükség a gradiensalapú optimalizálás so-
rán. Ez a skálázási kihívás nemcsak a gradiensalapú opti-
malizálásra érvényes, hanem a gradiensmentes optima
lizálási módszerekre is, és megoldatlan kihívás marad 
még a magasabb rendű optimalizálási technikák alkal-
mazása esetén is. Számos módszert javasoltak már a 
lapos paramétertér problémájának kezelésére. A korai 
kutatási kezdeményezések a platók megkerülésére irá-
nyuló stratégiákra összpontosítottak az algoritmusok ini-
cializálási szakaszában. Más munkák a kvantumáram
körök rétegenkénti optimalizálását javasolták, míg egyéb 

munkák egy véletlenszerű „kapuaktiváláson” alapuló 
módszert alkalmaztak, hogy fokozatosan lehessen nö
velni a kvantumáramkör kifejezőképességét. Új szemlé-
letmódot hozott, amikor megmutatták, hogy platókat 
indukálhat a kvantumos összefonódás, de akár a zaj is. 
Fontos kiemelni, hogy a javasolt módszerek elsősorban 
arra összpontosítanak, hogy elkerüljék a platók kiala
kulását. Jelenleg nem létezik olyan ismert módszertan, 
amely képes lenne az optimalizálási folyamatot hatéko-
nyan elvezetni a platók között.

A problémát saját kutatásaink keretein belül is meg-
vizsgáltuk. Az Eötvös Loránd Tudományegyetem és a 
HUN-REN Wigner Fizikai Kutatóközpont által fejlesz-
tett SQUANDER programcsomagban (3. ábra) imp
lementált újszerű optimalizálási algoritmusunk jelen-
tősen jobb hatékonyságot mutatott a VQE probléma 
megoldása során a hagyományos optimalizáló algorit-
musokkal szemben. A SQUANDER nyílt forráskódú 
programcsomagot a GitHub közösségi megosztó plat-
formon tettük elérhetővé a felhasználók számára [1]. 
Megmutattuk, hogy a költségfüggvény hosszú skálájú 
tulajdonságai felhasználhatóak az optimalizálási irány 
(melyet általában a  gradiens iránya határoz meg) és a 
vonalkeresési távolság meghatározására. Módszerünk 
egy új vonalkeresésen alapuló megközelítést valósít meg 
a kvantumáramkörök tanítása során. Ezt úgy érjük el, 
hogy effektíve csökkentjük a tanítandó kvantumáram-
kör kifejezőképességét azzal, hogy az egyes iterációk az 
optimalizálási paramétereknek csak egy kisebb részhal-
mazát frissítik. A hagyományos gradiensalapú optimali-
zálási megközelítésekkel összehasonlítva – mint például 
a gradiensereszkedés vagy a gépi tanulás során gyakorta 
alkalmazott ADAM algoritmus – optimalizálási meg
közelítésünk hatékonyabbnak bizonyult az optimalizálá-
si folyamat első szakaszában; itt a mi módszerünk jelen-
tősen nagyobb javulást mutatott a célfüggvényben – sőt, 
kevesebb célfüggvény-kiértékeléssel ért el nagyobb ja-
vulást. A módszer matematikai hátterének részleteit egy 
korábbi publikációnkban mutattuk be [2]. A kifejlesztett 
optimalizálási stratégiánk hatékonyan csökkentette a 
VQE célfüggvényét több ezer iteráció alatt anélkül, hogy 
a platók csapdájába esett volna, ahogy ezt a 4. ábra szem-
lélteti.

A 4. ábra numerikus szimulációink eredményeit mu-
tatja be, melyeket egy véletlenszerűen megkonstruált 
Heisenberg-modell alapállapotának becslése végett foly-

Kvantumkapu-
felbontás

Állapotpreparálás

Kvantumos gépi
tanulás

Evolúciós és gradiensalapú
optimalizátorok

3. ábra. Az Eötvös Loránd Tudományegyetem és a HUN-REN Wigner 
Fizikai Kutatóközpont által fejlesztett SQUANDER programcsomag 
felépítése [1]
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tattunk. A Heisenberg-modell, amely a spineken ható 
spinoperátorokkal írható le, a kvantumos rendszerek leg
általánosabb formáját állítja elénk, amelyeket egy kvan-
tumbit-alapú kvantumprocesszoron meg lehet valósíta-
ni. A spinek között fellépő, mágneses alapokon nyugvó 
kölcsönhatásokat többnyire a spinek egymás közti távol-
sága határozza meg. Pozsgay Balázs a Fizikai Szemle je-
len példányában megjelent, az integrálható modellekről 
szóló cikkében részletesen ír a Heisenberg-modell mate-
matikai megfogalmazásáról láncok mentén elhelyezkedő 
spinek esetében, ahol a kölcsönhatások a szomszédos 
spinek között lépnek fel. Ez a kép tovább általánosítható, 
ha a spinek a térben véletlenszerűen helyezkednek el. Eb-
ben az esetben párok helyett egyszerre több spin is köl-
csönhatásba léphet egymással. A 4. ábrán szemléltetett 
eredményeink olyan esetre vonatkoznak, amikor a spi-
nek közelségéből kifolyólag spinhármasok között lépett 
fel kölcsönhatás. A véletlenszerűen kiválasztott spineken 
definiált Heisenberg-modellt nehéz szimulálni klasszikus 
eszközökkel. Mivel jelenleg még nem állnak rendelke-
zésünkre kellően alacsony zajszintű kvantumszámító-
gépek, a vizsgált kvantumáramköröket a SQUANDER 
programcsomagban elérhető nagyteljesítményű kvan-
tumszámítógép-szimulátor felhasználásával tanítottuk. 
Az új optimalizálási technika hatékonyságának felméré-
séhez szándékosan kizártunk minden zajforrást az áram-
körök szimulációjából, és tökéletes méréseket feltételez-
tünk a kvantumbiteken. Ez a megközelítés lehetővé tette 
számunkra, hogy kifejezetten a kifejlesztett optimalizáló 
módszer teljesítményének vizsgálatára összpontosítsunk 
a munkánk során.

A 16 kvantumbites rendszer elemzése során identi
tásoperátorokkal inicializáltuk az optimalizálást (azaz 

nulla forgatási paraméterekkel kezdjük az optimalizá-
lást), lehetővé téve a költségfüggvény meredek csökke
nését, ahogyan azt a 4. ábra mutatja. Összehasonlítá-
sunk azt mutatja, hogy a gradiensalapú optimalizálók 
jelentősen alacsonyabb hatékonyságot mutatnak a 16 
kvantumbites probléma megoldásában. Ezzel szemben 
az általunk kifejlesztett optimalizálási módszer fenn-
tartja hatékonyságát az iterációk első negyedében, gyor-
san megközelítve az optimalizálás célértékét, ahogy azt 
a kék vonal mutatja a 4. ábrán. Meg kell azonban emlí
tenünk Michael Powell gradiensmentes optimalizálási 
módszerét is, mivel megközelítésünk hasonlóságokat 
mutat ezzel a módszerrel. Ebből kifolyólag a Powell op-
timalizálási módszerével végzett numerikus kísérletek 
nagyon közel kerültek eredményeinkhez. A mi megkö-
zelítésünk azonban két szempontból múlja felül Powell 
módszerét. Először is, az általunk kifejlesztett módszer 
a tanítandó kvantumáramkört leíró matematikai modell 
analitikus tulajdonságaira támaszkodva állapítja meg az 
optimalizálási irányt, az optimalizálandó célfüggvény 
függvényalakjához igazodva. Ezzel szemben Powell 
módszere általános elvekre támaszkodva, iteratív mó-
don határozza meg az optimalizálási irányt, az előző 
iteráció során kinyert eredmények alapján, nem pedig a 
célfüggvényből kinyerhető információk alapján. Másod-
szor, Powell módszerével ellentétben megközelítésünk 
párhuzamosítható (az optimalizálási irányt párhuzamo-
san kiértékelhető mennyiségek határozzák meg), jelen-
tősen lerövidítve a kvantumáramkör tanításához szük-
séges időt. Sajnos numerikus kísérleteink nem tudták 
pontosan reprodukálni a keresett alapállapotot. Ez azzal 
magyarázható, hogy az alkalmazott kvantumáramkör – 
annak alulparaméterezettségéből kifolyólag – nem fel-
tétlenül alkalmas minden tetszőleges kvantumállapot 
előállítására.

Annak érdekében, hogy megértsük az általunk ki
fejlesztett optimalizálási módszer sikerét megalapozó té-
nyezőket, összehasonlítjuk azt a gradiensalapú optimali-
zálókkal. Sajnos a paramétertér magas dimenziója nem 
teszi lehetővé a jelenség explicit vizsgálatát, ezért csupán 
kvalitatív magyarázattal szolgálhatunk. Az egyes iterá-
ciókban az optimalizálandó paraméterek kis részhalma-
zának kiválasztásával a kvantumáramkör kifejezőképes-
sége effektíve csökken, hatékonyan mérsékelve ezzel az 
optimalizálás platóra jutásának kockázatát, amennyi
ben platómentes területről indítjuk az optimalizálást. 
Egy alacsony kifejezőképességű kvantumáramkör opti
malizálásával a képzési folyamat minden iterációjában 
hatékonyan elkerülhetjük a platókat. Ezt a tendenciát  a 
gradiensalapú megoldók esetében is megfigyeltük: az op-
timalizálás jelentősen hatékonyabbá vált, amennyiben az 
összes paraméter helyett azok véletlenszerű részhalma-
zát frissítettük iterációnként. A gradiensalapú megoldók 
azonban így sem értek fel módszerünk hatékonyságához, 
mivel azok nem támaszkodtak az optimalizálandó cél-
függvény azon analitikus tulajdonságaira, melyek meg-
határozzák a célfüggvény hosszú léptékű tulajdonságait.

4. ábra. Különböző gradiensalapú és gradiensmentes optimalizáló el
járások hatékonysága (az alapállapoti energia közelítése a célfüggvény- 
kiértékelési iterációk számának függvényében). Az optimalizálás célja 
egy véletlenszerű 16 kvantumbites Heisenberg-modell alapállapotának 
meghatározása
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A felvázolt eljárás azonban nem oldja meg teljes 
mértékben a platók problémáját, mivel a paramétertér 
egy kiválasztott alterének optimalizálása csak az adott 
altérnek megfelelő minimumot érheti el. Ha már közel 
kerültünk egy lokális minimumhoz (vagy egy platóhoz), 
a célfüggvény javulása is kicsivé válik. Egyszerre elő-
nyös tehát bővíteni is és csökkenteni is az iterációnként 
kiválasztott paraméterek számát. Ez a két egymással 
versengő szempont meghatároz egy optimális paramé-
terszámosságot, melyeket iterációnként optimalizálva 
a leghatékonyabbá válik a VQE probléma megoldása. 
Numerikus eredményeink azt sugallják, hogy a paramé-
terek számosságának 50 körüli értéke válik a leghatéko-
nyabb választássá az optimalizálás során.

Numerikus eredményeinkből azt a következtetést 
vonhatjuk le, hogy a munkánkban kifejlesztett való-
színűség-alapú optimalizáló algoritmus – kihasználva 
a paramétertér hosszú léptékű tulajdonságait – ígére-

tes jelöltnek bizonyul a variációs kvantumproblémák 
nagyobb léptékű megoldásához, új lendületet adva a 
kvantumos gépi tanulás területéhez kapcsolódó kuta-
tásoknak. Módszerünket ugyan kvantumszámítógép-
szimulátor segítségével fejlesztettük ki, azonban 
mindvégig szem előtt tartottuk annak valódi kvantum-
számítógépen történő alkalmazhatóságát. Az optimali-
zálási módszert valódi kvantumprocesszorok alkalma
zásával tervezzük továbbfejleszteni.
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nagyszámú kölcsönható test mozgásának leírása a klasz-
szikus fizikában is komoly kihívás. Jól ismert például 
(lásd Pozsgay Balázs cikkét a jelen számban), hogy há-
rom, gravitációsan kölcsönható test dinamikája általá-
ban kaotikus, és nem lehet pontosan megoldani. ettől 
függetlenül a klasszikus mozgásegyenletek megoldásá-
hoz szükséges számítási teljesítmény legfeljebb a testek 
számának hatványaival nő, így pl. a naprendszer összes 
objektumának dinamikája pontosan szimulálható.

a kölcsönhatások kvantummechanikai kezelése még 
nagyobb kihívást jelent. a klasszikus mozgásegyenlete-
ket a Schrödinger-egyenlet váltja fel, amelynek megol-
dásai nem egyszerűen a rendszer elemeinek pályái, 
hanem hullámfüggvények, amelyek a rendszer összes le-
hetséges konfigurációjának valószínűségét tartalmazzák. 
ennek megfelelően a hullámfüggvény információtartal-
ma exponenciálisan nő a részecskék számával, így egzak-

tul, nyers erővel csak nagyon kicsi rendszerek szimulál-
hatók. a kvantumkémiai és anyagtudományi szimulációk 
ezt a problémát számos különböző módon közelítik meg:
•	 nem túl nagy rendszerek hullámfüggvénye továbbra is 

kiszámítható, feltéve, hogy az információtartalmukat 
kezelhető számú paraméterbe sűrítjük. nyilvánvalóan 
egy megoldás sem alkalmas az összes lehetséges hul-
lámfüggvény tömörítésére, így fontos, hogy a tömö-
rített forma ki tudja fejezni a fizikailag fontos hullám-
függvényeket.

•	 nagy molekulák hullámfüggvény-alapú  szimulálása 
nem praktikus; ehelyett kémiai viselkedésüket az 
atom magok (közelítőleg klasszikus) mozgásából is 
levezethetjük. az atommagokra ható erők viszont az 
elektronok kvantumos mozgásának függvényei, így 
ezek hatékony kiszámítása továbbra is fontos.

•	 a kvantumszámítógépeken és hasonló új platformo-
kon végzett kísérletek nagy mennyiségű, részletgaz-
dag adatot produkálnak, amelynek teljes hasznosítása 
kifinomultabb adatfeldolgozást igényel, mint a hagyo-
mányos, anyagokon végzett kísérletek.

ebben a cikkben a gépi tanulás és különösen a neurá-
lis hálózatok alkalmazásait járjuk körül a három fenti pél-
dára, amelyek messze nem merítik ki az összes lehetősé-
get [1]; rakyta Péter cikke a jelen számban a gépi tanulás 
kvantumszámítógépekre való alkalmazásait járja körül. 

 

Szabó Attila a zürichi egyetem (universität 
zürich) tudományos munkatársa. fő kuta-
tási területe a szorosan kölcsönható sokré-
szecskerendszerek elméleti és számítógépes 
modellezése, különös tekintettel a mágneses 
anyagok kvantumos tulajdonságaira.

https://github.com/rakytap/sequential-quantum-gate-decomposer
https://github.com/rakytap/sequential-quantum-gate-decomposer
https://doi.org/10.48550/arXiv.2402.05227
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A neurális hálózatok rövid bevezetése után látni fog-
juk, hogyan használhatjuk őket akár hullámfüggvények 
leírására, akár egy molekulában az atomokra ható erők 
modellezésére, akár arra, hogy kísérleti vagy szimulációs 
adatokból azonosítsuk egy rendszer fázisait (1. ábra). 
Mindhárom példa jól illusztrálja, hogy a feladat fizikai 
megértése – beleértve annak szimmetriáit és a lokalitás 
szerepét – elengedhetetlen ahhoz, hogy hatékony neurá-
lis hálózatokat tervezzünk.

Neurális hálózatok…
Az első neurális hálózatok az 1960-as években jelentek 
meg a gépi tanulásban. Ezeket az emberi agyat működ-
tető neuronhálózatok inspirálták, ahol a neuronok elekt-
romos jeleket küldenek egymásnak, amelyek együttes 
hatása dönti el, hogy milyen jeleket küldenek tovább. 
Ugyanígy, egy egyszerű előrecsatolt neurális hálózat 
(feedforward neural network) először a bemenetek (pl. 
egy kép pixeleinek világosságértékei) lineáris kombiná-
cióját veszi, majd egy f nemlineáris függvényt alkalmaz 
rájuk:

		 (1) (1)
j ij i

i

y f W x ,
 =  
 
∑ 	 (1)

ahol Wij
(1) egy sor optimalizálható („tanulható”) para

méter. Az agy az érzékszervekből érkező jeleket hier
archikusan dolgozza fel: a „nyers adatok” több agyi te-
rületen is áthaladnak, amelyek egyre magasabb szintű 
információt vonnak ki belőlük. Egy mesterséges neu-
rális hálózatot ugyanígy kibővíthetünk további rejtett 
rétegekkel, amelyek az előző rétegek kimeneteit dolgoz-
zák fel tovább:

		 ( ) ( ) ( 1)k k k
j ij i

i

y f W y .− =  
 
∑ 	 (2)

Néhány ilyen réteg után a bemenő adatokat a kívánt ki-
menet formátumára (pl. annak a valószínűségére, hogy a 
kép egy kutyát vagy macskát ábrázol) hozzuk.

A hálózatot ezután tanítani kell, azaz a W paramé-
tereket úgy kell beállítani, hogy a hálózat a kívánt ki-
meneteket adja vissza. A legegyszerűbb megoldás az 
ellenőrzött tanulás (supervised learning) ahol számos 
bemenet-kimenet pár már adott. A „tanulás” egy hiba-
függvény (loss function) minimalizálását jelenti, amely 
a hálózat kimenetének a kívánt kimenettől való eltérését 
méri. A fenti „kutya vagy macska” példában

		
mint ká

log (helyes v lasz)áL p= − ∑ 	 (3)

egy megfelelő hibafüggvény: L mindig legalább 0, ezt a 
minimumot pedig akkor éri el, ha a hálózat minden be-
menetre 100% valószínűséggel a helyes választ adja vis�-
sza. L a hálózat paramétereinek függvénye, így a feladat 
azok optimalizálása úgy, hogy L minél kisebb legyen. A 
legegyszerűbb algoritmus a gradiensleszállás (gradient 
descent). L gradiense, ∂ L/∂ Wi   a leggyorsabb növekedés 
irányába mutat, így a paraméterek ellenkező irányba lép-
tetésével L csökkenthető:

		 ,i i
i

L
W W

W
α ∂→ −
∂ 	 (4)

ahol α az optimalizálás sebességét szabályozó paraméter. 
A gradiens sokrétegű neurális hálózatokban is hatéko-
nyan kiszámítható a láncszabály segítségével; modern 
gépi tanulási könyvtárakban ez a folyamat már teljesen 
automatizált.

A gépi tanulás elmúlt évtizedének sikerei túlnyomó-
részt annak köszönhetőek, hogy a sokrétegű („mély”) 
neurális hálózatok tetszőlegesen bonyolult függvényeket 
is pontosan képesek közelíteni, míg a gradiensleszállás-
hoz hasonló optimalizációs algoritmusok viszonylag kis 
hálózatokkal is hatékonyan megtalálják ezeket a közelí-
téseket.

…mint hullámfüggvények

Egy sokrészecske-hullámfüggvény leírása sok szempont-
ból hasonlít a fenti képfelismerési feladathoz: a rendszer 
lehetséges konfigurációit (x) egy sor „bemenet” (pl. az 
összes elektron helyzete) írja le; a hullámfüggvényt úgy 
definiáljuk, hogy ezek minden kombinációjához egy 

p(kutya)

p(macska)

Ψ(σ )

V(r1,r2,…)

p(para)

p(ferro)

y (1) y (2) y (n)…

a

b

c

d

1. ábra. Neurális hálózatok négy lehetséges alkalmazása. a) Képfelisme-
rés: a bemenet egy kép (pixelek világosságértékei), a kimenet annak a 
valószínűsége, hogy a kép különböző dolgokat ábrázol. b) Neurális hul-
lámfüggvény: a bemenet a rendszer szabadsági fokainak egy konfigurá-
ciója (spinek iránya, elektronok helyzete, …), a kimenet e konfiguráció 
amplitúdója a hullámfüggvényben. c) Neurális potenciálfelület: a be-
menet egy molekula atom(mag)jainak helyzete, a kimenet a molekula 
alapállapoti energiája ebben a konformációban. d) Fázisfelismerés: a 
bemenet a rendszer pillanatnyi konfigurációja, a kimenet annak a való-
színűsége, hogy a rendszer különböző termodinamikai fázisokban van
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Ψ(x) valószínűség-amplitúdót rendelünk. Sok esetben 
ezek a szabadsági fokok egy szabályos rácsot alkotnak, 
akárcsak egy digitális kép pixelei. Ebből az analógiából 
kiindulva a hullámfüggvényt egy neurális hálózattal is 
leírhatjuk, amely a paraméterek optimalizálásával „meg-
tanulhatja” a kérdéses kvantumállapotot. Konkrétabban 
egy Hamilton-operátor alapállapotának keresésénél a 
hibafüggvény szerepét a kvantumállapot energiája, E = 
〈Ψ|H|Ψ〉, tölti be, lévén az energia az alapállapotban a 
legalacsonyabb. E és a gradiense, ∂ E/∂ Wi   nem számol-
ható ki egzaktul nagyobb rendszerekre, viszont megbíz-
hatóan becsülhető a hullámfüggvényből való mintavétel-
lel [2], így a gradiensleszállás hatékonyan használható.

Ezt a módszert először mágneses kvantumrendsze-
rekre alkalmazták [3]. Az alábbi Hamilton-operátor kü-
lönösen sok figyelmet kapott:

		 1 2 ,i j i j
ij ij

H J S S J S S
〈 〉 〈〈 〉〉

= ⋅ + ⋅∑ ∑
   

	 (5)

ahol a két összeg egy négyzetrács élein és átlóin fut vé-
gig; minden rácspontban pedig egy erősen fluktuáló fe-
les spinoperátor iS



 helyezkedik el. Külön-külön mindkét 
tag alapállapota rendezett: az első tag akkor a legalacso-
nyabb, ha a szomszédos spinek ellentétes irányba mu-
tatnak, így az alapállapotban a spinek irányai sakktábla
mintába rendeződnek; a második tag alapállapota hasonló 
elven ellentétes spinű sávokból áll (2. ábra). J2/‌J1   = 1/2 
körül a két fázis közti vetélkedés minden hagyományos 
mágneses rendeződést meggátol; az alapállapotot ehe-
lyett a spinek szoros kvantumos összefonódása határozza 
meg. E köztes fázisok természete régóta nyitott kérdés és 
a magas hőmérsékletű szupravezetők fizikájának megér-
tése szempontjából is érdekes. A neurális hullámfüggvé-
nyek minden korábbinál jobban megközelítik az alapál-
lapot energiáját, így pontosabb betekintést nyújtanak a 2. 
ábrán látható fázisdiagramba [4, 5].

Ehhez a sikerhez fontos, hogy a Hamilton-operátor 
szimmetriáit (pl. a rács eltolás- és forgásszimmetriáját) 
beépítsük a neurális hálózat szerkezetébe. Ez egy újabb 
analógia a képfelismerési feladattal: egy kutya képét 
mindig ugyanúgy kell felismerni, függetlenül a kutya 

helyétől a képen. Az eltolásszimmetriát konvolúciós neu-
rális hálózatok (convolutional neural networks, CNN, 
3. ábra) használatával garantálhatjuk: ezekben a rejtett 
y(k) rétegek geometriája megegyezik a bemenetével, és 
a Wij

(k) paraméterek csak i és j egymáshoz viszonyított 
helyzetétől függnek. Ennek eredményeként a bemenet 
eltolásától a rejtett rétegek tartalma nem változik, csak 
ugyanannyira eltolódik, így az utolsó réteg elemeinek 
összege szimmetrikus lesz. Mivel a szimmetrikus hul-
lámfüggvények Hilbert-tere kisebb, mint minden lehet-
séges állapoté, egy szimmetrikus neurális hálózat gyor-
sabban és megbízhatóbban tanul, és a végeredmény is 
pontosabb lesz.

A neurális hullámfüggvények kölcsönható elektronok 
szimulálására is használhatók. A hullámfüggvény szim-
metriája itt is kulcsszerepet játszik: a Pauli-féle kizárási 
elv miatt egy elektron-hullámfüggvény előjele ellentétes-
re vált, ha bármely két elektron sorrendjét megcseréljük, 
azaz

		 1 1( ) ( )i j j i, , , , , , , , .Ψ … … … = −Ψ … … …r r r r r r 	 (6)

A legtöbb szimulációs módszerben a folytonos elektron-
koordinátákat  véges számú atomi vagy molekulapályára 
kell korlátoznunk. Ezzel szemben a neurális hullámfügg-
vények ideális bemenete éppen az elektronok helyzete, ri 
[6]. A Pauli-elv (6) betartatására Ψ(ri)-t egy általánosított 
Slater-determinánsként számítjuk ki. A neurális hálózat 
nem közvetlenül a teljes sokrészecske-hullámfüggvényt 
írja le, hanem a Slater-determinánst alkotó effektív mo-
lekulapályákat, amelyek a többi elektron helyzetére is 
érzékenyek (pl. kisebb valószínűséggel közelítenek meg 
másik elektronokat, amelyekkel elektromosan taszítják 
egymást), így sokkal kompaktabb neurális hálózatokkal 
is pontos eredmények érhetők el. Mivel a neurális hul-
lámfüggvények nemcsak bizonyos molekulapályákra, 
hanem a teljes Hilbert-térre definiáltak, jelentősen javíta-
nak minden korábbi szimulációs módszeren, és jelentős 
hatással vannak a kvantumkémiára és újabban a szilárd-
testfizikára is. Rácsokon definiált modellekre (pl. a ma-
gas hőmérsékletű szupravezetők standard modelljeire) 
ugyanez a siker még várat magára; a rács szimmetriáinak 

p(kutya)

p(macska)

p(kutya)

p(macska)

=CNN

3. ábra. Egy konvolúciós neurális hálózat (CNN) minden rejtett rétege 
a bemenet geometriájára hasonlít, és a bemenet eltolásával a kimenet 
is ugyanúgy tolódik el, ezért az összes kimenet összege eltolásszimmet-
rikus

J2/J10.49 0.54 0.61

sakktábla

spin-
folyadék

összefonódott
kristály

sávos

2. ábra. A J1–J2 modell (5) alapállapoti fázisdiagramja [4]. Ha az élek 
(átlók) menti kölcsönhatások dominálnak, az ellentétes irányba mutató 
spinek sakktábla- (sáv-) mintába rendeződnek. A kettő közti vetélkedés 
mágneses rendeződés nélküli, kvantum-összefonódás által dominált át-
meneti fázisokhoz vezet. Ez az összefonódás lehet rövid távú és rende-
zett (angolul valence bond solid) vagy hosszú távú és teljesen szimmetri-
kus (spinfolyadék)
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beépítése a neurális hálózatokba egy különösen fontos 
megoldandó probléma.

…mint molekuláris energiafelületek

Néhány száznál több elektron teljes hullámfüggvényé-
nek szimulálása kifinomult közelítő módszerekkel is 
szinte lehetetlen, viszont a legtöbb kémiai folyamat meg-
értéséhez nem is szükséges. Mivel az elektronok sokkal 
könnyebbek az atommagoknál, sokkal gyorsabban mo-
zognak, így szinte azonnal  követik az atommagok moz-
gását, és mindig a pillanatnyi alapállapotban maradnak 
(ez az ún. Born–Oppenheimer-közelítés). Továbbá, az 
atommagok mozgása sokkal kevésbé kvantumos, mint az 
elektronoké, azaz jó közelítéssel klasszikus részecskeként 
mozognak egy V(r1, r2, …) potenciálban:

		 i i
i

V
m r ,

∂= −
∂r

 	 (7)

ahol –∂V/∂ ri az egyes atommagokra ható effektív erő. 
A  Born–Oppenheimer-közelítésben V az elektronok 
alapállapoti energiája az adott molekulakonformáció
ban: a sűrűségfunkcionál-elmélet (density functional 
theory, DFT) segítségével ez az energia és az effektív erők 
hatékonyan becsülhetőek a teljes hullámfüggvény kiszá-
mítása nélkül.

Nagy molekulákra (pl. fehérjék) azonban a DFT-ala-
pú számítás is időigényes, ezért nem célszerű újra és újra 
elvégezni a (7) mozgásegyenlet megoldása közben. A 
számítási idő drasztikusan csökkenthető, ha a DFT-adat-
pontokhoz egy egyszerűbben kiszámítható függvényt 
illesztünk, feltéve hogy a függvény jól közelíti a valódi 
energiafelületet két adatpont között. Molekuladinamikai 
szimulációkat pl. polinomiális közelítésekkel a modern 
gépi tanulás megjelenése előtt is sikerrel végeztek kis 
molekulákra. Mivel azonban a neurális hálózatok haté-

konyabban közelítenek bonyolult sokváltozós függvé-
nyeket, célszerűbben használhatók a V(ri) energiafelület 
közelítésére.

Ideális esetben a hálózatot sok különböző moleku-
lát használva egyszer s mindenkorra betanítanánk úgy, 
hogy utána új összetételű molekulákat is szimulálhas-
sunk vele. Ehhez a hálózatot az egyes atomokat képvi-
selő blokkokra kell osztanunk, amelyeket a kívánt ös�-
szetétel szerint adhatunk a hálózathoz vagy hagyhatunk 
el; az extenzív teljes energiát is célszerű az egyes atomok 
hozzájárulásának összegeként kifejezni. A legsikeresebb 
ilyen struktúra az üzenetváltó neurális hálózat (messa-
ge-passing neural network, MPNN, 4. ábra), amelyben 
az atomok mint egy gráf csúcsai jelennek meg, és ennek 
élei egy határértéknél (általában 5–10 Å) közelebbi ato-
mokat kötnek össze. Először a gráf csúcsaihoz és élei-
hez egy sor számot (xi  , xij) rendelünk (pl. pozíció, atomi 
rendszám, oxidációs szám; kötéstávolság stb.). Maga a 
neurális hálózat egy sor üzenetváltásból áll. Minden irá-
nyított élhez egy üzenetet rendelünk:

		 mi→j = M(xi , xij , xj),	 (8a)

amelyeket minden csúcson összesítünk (pl. összeadjuk 
ezeket). A csúcsok adattartalmát ezen üzenetek alapján 
frissítjük:

		 ( )i i j j ix V x , m .→′ = Σ 	 (8b)

Az élek adattartalmát szintén frissítjük a két végpont 
adattartalmának függvényében:

		 x'ij = E(xij , xi , xj) .	 (8c)

A gyakorlatban az M, V, E függvények kis neurális háló-
zatok. Egy sor üzenetváltás után a molekula teljes energi-
áját az egyes atomok hozzájárulásának összegeként kap-
juk meg, amelyeket a csúcsok végső adattartalma alapján 
számítunk ki.

A fenti struktúra a neurális potenciálok második 
generációjára [7] jellemző. Ezek szerkezetüknél fogva 
extenzívek és lokálisak, tanítás után tetszőleges mole-
kula-összetételhez használhatóak, és a kimenetük nem 
függ az atomok felsorolásának sorrendjétől a bemenet-
ben: mindezek komoly problémákat okoztak az első 
generációs, egyszerű előrecsatolt neurális hálózatokon 
alapuló potenciálfelületeknek. Továbbá, ha a csúcsok 
és élek adattartalmát skalár, vektor, … komponensekre 
bontjuk, V szimmetrikussá tehető a koordináta-rend-
szer eltolására és elforgatására, ami kulcsfontosságú 
az  atomokra ható erők és forgatónyomatékok meg-
bízható becsléséhez. A hálózatok pontossága tovább 
javítható hosszú távú (pl. Coulomb-) erők explicit 
hozzáadásával (ún. harmadik és negyedik generációs 
potenciálok); a javulás azonban viszonylag kicsi és 
praktikus célokra nem áll arányban a szükséges számí-
tási erőforrásokkal.

Ezek a neurális potenciálfelületek széles körben hasz-
nálatosak a kémiai, anyagtudományos és molekuláris 
biológiai kutatásban. A gépi tanulás más széles körben 

Zi ,ri ,…→xi

rij ,…→xij

xi xjxij x'ij

mi→j

mj→i

NN

x'i→Ei

x'ij

NNm→i

xi x'i

a

b

c

4. ábra. Egy üzenetváltó neurális hálózat (MPNN) elemei. a) Az atomok 
(csúcsok) és kötések (élek) adataiból bemeneti adatsorokat (xi , xij) kép-
zünk. b) Az él és két végpontjának adataiból egy neurális hálózat üzene-
teket (mi → j, mj → i) generál és frissíti az él adatait (x'ij). c) A beérkező üze-
netek alapján egy neurális hálózat frissíti a csúcsok adatait (x'i). Az utolsó 
üzenetváltások után az egyes atomok hozzájárulását a teljes energiához a 
csúcsok adataiból számítjuk ki
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elterjedt alkalmazásaihoz hasonlóan számos, nagyszámú 
példán előre betanított potenciál is létezik [8], amelyek 
tovább egyszerűsítik a szimulációkat.

…fázisátalakulások azonosítására

Egy klasszikus termodinamikai rendszer szimulálásának 
legegyszerűbb módja a statisztikus eloszlásból való min-
tavétel. Első közelítésben egy ilyen szimuláció több ada-
tot (egy sor pillanatfelvételt a rendszer összes szabadsági 
fokáról) produkál, mint amit egy ember közvetlenül át 
tud tekinteni. Ha a rendszer fázisai ismertek vagy meg-
tippelhetők, az egyes rendezett fázisok rendparaméterei 
és ezek fluktuációi és korrelációi kiszámíthatóak a nyers 
adatokból. Ezek segítségével a paraméterek különböző 
értékeit hozzárendelhetjük az egyes fázisokhoz, azaz 
megrajzolhatjuk a rendszer fázisdiagramját (erre egy pél-
da a 2. ábra).

Ezzel a módszerrel viszont sosem lehetünk teljesen 
biztosak, hogy a rendszer összes fázisát megtaláltuk. A 
gépi tanulás haszna ebben a feladatban az, hogy a beme-
net szabályosságait anélkül tudja felismerni, hogy előre 
megadnánk, hogy mik ezek a szabályosságok, így egy 
gépi tanulásos algoritmus akkor is meg tud különböztet-
ni két fázist, ha egyszerű rendparaméterek nem ismertek 
vagy nem léteznek.

Ha tudjuk, hogy létezik két különböző fázis, ezeket 
standard képfelismerő stb. algoritmusokkal meg tudjuk 
különböztetni egymástól [9]. A neurális hálózat tanításá-
hoz szükséges adatokat a fázisátmenettől távol generál-
juk mindkét fázisban; maga a tanítás ugyanúgy történik, 
mint az első „kutya vagy macska” példában. A betanított 
hálózatot ezután a fázishatárhoz közelebbi szimulációkra 
futtatjuk le: ahogy átlépjük a határt, az egyes fázisok 
becsült valószínűsége folytonosan változik 0-ról 1-re; az 
átmenet annál élesebb, minél nagyobb rendszereket szi-
mulálunk (5. ábra).

Szerencsésebb lenne viszont, ha ilyen előzetes infor-
mációk nélkül is azonosítani tudnánk a rendszer fázisait. 
Az előző technikát ehhez az ellenőrizetlen tanulási (un-
supervised learning) feladathoz is felhasználhatjuk: ve-
gyünk két közeli pontot a paraméterek terében, tegyük 

fel, hogy különböző fázisokban vannak, és tanítsunk be 
egy neurális hálózatot, hogy megkülönböztesse ezeket. 
Ha a két pont valóban különböző fázisokban van, a háló-
zat sokkal sikeresebb lesz, mintha ugyanabban a fázisban 
lennének. Ezt a műveletet ismételve a rendszer minden 
fázisátmenete feltérképezhető.

A különböző paraméterekkel végzett szimulációkat 
automatikusan, pusztán az adatok hasonlóságai és kü-
lönbségei alapján is különböző fázisokra oszthatjuk. Az 
autoencoder neurális hálózatokat (6. ábra) ilyen osztá-
lyozásra tervezték: a bemenet és a kimenet szerkezete 
megegyezik, de van egy szűk keresztmetszet középen, 
sokkal kevesebb neuronnal, mint a bemenet információ-
tartalma. A tanításhoz használt hibafüggvény a bemenet 
és a kimenet közti eltérés, így a betanított hálózat a lehe-
tő legpontosabban reprodukálja az összes adatot, amit a 
tanítás során látott. A betanított hálózat szűk kereszt-
metszete így az adatok legfontosabb jellemzőit tartal-
mazza, erősen tömörítve. Márpedig a különböző fázisok-
ban gyűjtött szimulációs adatok közti legdrasztikusabb 
különbségek éppen az egyes fázisok között mutatkoznak, 
ezért az ugyanahhoz a fázishoz tartozó összes paraméter-
választás a tömörített formában egymáshoz közel képe-
ződik le, a különböző fázisok reprezentációi eltávolodnak 
egymástól, így kiemelve a fázisokat és a határaikat [10].

Az ily módon talált fázisok fizikai leírásához hasz-
nos lenne rendparamétereket találni, amelyek megkü-
lönböztetik ezeket más fázisoktól. A neurális hálózatok 
bonyolult szerkezetük miatt nem ideálisak erre a célra, 
más gépi tanulási technikák viszont használhatóak. Egy 
lehetséges megoldás az, hogy a rendszer összes korre-
lációját kiszámítjuk egy adott rendig (pl. legfeljebb 4 
szabadsági fok), és megkeressük az egyes komponensek 
közül a  legnagyobbakat, azaz a legvalószínűbb rend-
paramétereket [11]. Ezt az értelmezhetőséget azonban 
a hatékonyság kárára érjük el: a fenti példában előre el 
kell döntenünk, hogy milyen típusú rendparamétereket 
veszünk figyelembe, így a bonyolultabb fázisok továbbra 
is rejtve maradnak. Ezzel szemben egy neurális hálózat 
közvetlenül a szimulált adatokkal is tud dolgozni, így elv-
ben bármilyen fázist képes azonosítani; ezeket a fázisokat 
azonban továbbra is nehéz lehet leírni.

A fentiek nemcsak számítógépes szimulációkhoz 
hasznosak, hanem olyan új kísérleti platformokon is, 
mint a kvantumszámítógépek vagy az optikai rácsokban 
mozgó ultrahideg atomok, ahol valódi anyagokban el-
képzelhetetlen mérések is elvégezhetők. Mivel ezekben 

5. ábra. Neurális hálózat által becsült fázisok egy L×L-es négyzetrácson 
definiált Ising-modellre [9]. Az adatsorok a paramágneses (piros) és a 
rendezett ferromágneses (kék) fázisok becsült valószínűségét mutatják. 
A fázisátalakulástól (függőleges szaggatott vonal) távol mindkét fázis 
pontosan beazonosítható; az átmenet a másodrendű fázisátalakulástól 
elvárt módon nagyobb rendszerekre egyre élesebb

6. ábra. Egy autoencoder neurális hálózat bemenete és kimenete azonos 
szerkezetű, és betanítás után minden bemenetet a lehető legpontosab-
ban önmagára képez. A középen levő szűk keresztmetszet ezért a taní-
táshoz használt adatok legfontosabb eltéréseit tanulja meg kivonni



a rendszerekben minden szabadsági fok jól elkülönül 
a többitől, lehetőség van arra, hogy külön-külön mind-
egyiket megmérjük, lényegében olyan pillanatfelvételt 
készítve, mint amilyet egy számítógépes szimulációban 
kapnánk. A fenti gépi tanulási módszerek ezért kitűnőek 
arra, hogy ezekből az adatokból a lehető legtöbb infor-
mációt kinyerjük. Ennél ambiciózusabb feladat, hogy egy 
kvantumeszközön végzett mérések segítségével rekonst-
ruáljuk a teljes kvantumállapotot, hogy így minden más 
mérési eredményt is megjósolhassunk. A neurális hullám-
függvények ilyen kvantumállapot-tomográfiára (quantum 
state tomography) is jól használhatók.

Kitekintés
A fenti példák messze nem fedik le a gépi tanulás min-
den fizikai alkalmazását [1];  a részecskefizikai kísérle-
tek által produkált óriási mennyiségű adat feldolgozása 
például elképzelhetetlen lenne hatékony gépi tanulás 
nélkül. Azt viszont jól illusztrálják, hogy a sikeres gépi 
tanuláshoz elengedhetetlen, hogy a feladat fizikai tulaj-
donságai által motivált neurális hálózatokat és algorit-
musokat használjunk. A nyitott kutatási kérdések is főleg 
ekörül forognak: ki lehet-e vonni egy rendszer fázisainak 
fizikai leírását egy neurális hálózatból? Milyen neurális 
hálózat tud jól leírni elektron- (spin-, …) hullámfügg
vényeket? E kérdések megválaszolásához a közkeletű 
elképzeléssel szemben nem csak számítógépekre van 
szükség: az emberi kreativitás és intuíció legalább olyan 
fontos, mint bármely más kutatási területen.
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Pozsgay Balázs elméleti fizikus az elte fi-
zikai intézetében, az elméleti fizikai tan-
széken dolgozik, ahol egy „lendület” kuta-
tócsoportot vezet. munkájában elsősorban 
az integrálható modellek dinamikájával fog-
lalkozik.

1. a kvantumos szimuláció ötlete

a legtöbb fizikai rendszer olyan, hogy bár ismerjük a 
rendszer viselkedését leíró mozgástörvényeket, alap-
vető egyenleteket, ezek megoldása és a rendszer visel-

kedésének pontos előrejelzése analitikus módszerekkel 
nem lehetséges. viszonylag kevés olyan probléma van, 
ahol egzakt megoldást tudunk adni. a klasszikus fiziká-
ban fontos példa a gravitációs soktestprobéma: míg egy 
bolygónak a nap körüli mozgását pontosan le tudjuk 
írni a Kepler-törvényekkel, három gravitáló test egy-
másra hatását és a kialakuló mozgást már nem lehet kép-
letekkel leírni, előrejelezni. ugyanakkor egy klasszikus 
fizikai soktestprobléma, még ha nem oldható is meg 
képletekkel, leg alább számítógépen viszonylag könnyen 
szimulálható.

ezzel ellentétben a kvantummechanikai soktestprob-
lémák nem szimulálhatóak hatékonyan – a Hilbert-tér 
ex ponenciálisan növekvő mérete miatt. ez a  probléma 
vezette richard feynmant arra, hogy megalkossa a kvan-

https://doi.org/10.48550/arXiv.1903.10563
https://doi.org/10.48550/arXiv.1606.02318
https://doi.org/10.48550/arXiv.1606.02318
https://doi.org/10.48550/arXiv.2005.14142
https://doi.org/10.48550/arXiv.2211.07749
https://doi.org/10.48550/arXiv.1909.02487
https://doi.org/10.48550/arXiv.1909.02487
https://doi.org/10.48550/arXiv.2107.03727
https://doi.org/10.48550/arXiv.2206.07697
https://doi.org/10.48550/arXiv.1605.01735
https://doi.org/10.48550/arXiv.1703.02435
https://doi.org/10.48550/arXiv.1907.12322


FIZIKAI SZEMLE  2025/7–8278

tumszámítógép elgondolását. Egy 1981-es előadásában 
fogalmazta meg a híressé vált szavait [1]: „Nature isn’t 
classical, dammit, and if you want to make a simulation 
of nature, you’d better make it quantum mechanical, and 
by golly it’s a wonderful problem, because it doesn’t look 
so easy.”

Feynman tehát azt javasolta, hogy ha a kvantum
mechanikai törvényekkel leírható természetet akarjuk 
szimulálni, akkor legyen a számítógépünk is kvantumos. 
Évtizedekkel később ez az elgondolás végül megvalósult, 
legalábbis bizonyos részleteiben. Ma már léteznek kvan-
tumszámítógépek, amelyek képesek kvantummechani-
kai „számítások” elvégzésére. Ezáltal – legalábbis elvben 
– lehetővé vált, hogy kivitelezzük Feynman eredeti tervét.

A ma elérhető kvantumszámítógépek nagyon zajo-
sak (kb. 0,1%-os hibaráta logikai kapunként), és túl ke-
vés kvantumbitet (kb. 100) tartalmaznak ahhoz, hogy a 
gyakorlati hasznosításuk lehetővé váljon. Olyan típusú 
feladatokat, mint például új gyógyszerek vagy egyéb 
molekulák tervezése a közeli jövőben valószínűleg nem 
fognak tudni megoldani. Mindamellett a mai technoló-
gia ahhoz már elegendő, hogy bizonyos egyszerű fizikai 
rendszereket a kvantummechanika szabályai szerint szi-
muláljon. Ez egy jelentős mérföldköve a mai fizikának és 
a mérnöki tudásnak.

Ebben a cikkben ezekre a ma már megvalósított kvan
tumos szimulációkra mutatunk példákat, mégpedig az 
integrálható modellek területéről. Az alább említett pél-
dákban különösen érdekes módon fonódnak össze az 
analitikus számolások, a klasszikus szimulálhatóság és a 
kvantumos számítások témakörei.

2. Az integrálható modellek
Az integrálható modellek a fizikai rendszerek szűk, spe
ciális osztályát írják le. Ezek olyan rendszerek, amelyek-
ben sok extra megmaradó mennyiség létezik a hagyo-
mányos megmaradó mennyiségeken túl. Ezek az extra 
megmaradó mennyiségek a mozgástörvények nagyon 
speciális voltából fakadnak. Ezek a különleges tulajdon-
ságok lehetővé teszik a modellek egzakt megoldását, 
vagy legalábbis bizonyos fizikai mennyiségek egzakt, 
analitikus módon történő kiszámítását. Integrálható mo-
delleket találunk a klasszikus fizikában és a kvantumos 
világban is. Ezek a rendszerek szinte kizárólag egy tér-
beli dimenzióban léteznek. Ugyanakkor ezek a rendsze-
rek egyáltalán nem triviálisak, és mint látni fogjuk alább, 
ezt a területet jelenleg is aktívan kutatják mind elméleti, 
mind kísérleti oldalról.

Az integrálható modellek története egészen a kvan-
tummechanika hőskoráig nyúlik vissza. Az első ilyen 
típusú modell felfedezése és megoldása közel egyidős a 
kvantummechanikával: Hans Bethe 1931-ben adta meg 
az ún. Heisenberg-spinlánc egzakt megoldását. Ez a mo-
dell eredetileg a mágnesség leírására szolgált, azonban 
később a matematika és fizika számos ágának fejlődését 
befolyásolta. A modell Hamilton-operátora a következő 

tömör alakba írható:

		  

1j j

j

Ĥ .+= ⋅∑S S 	 (1)

Itt S egy operátorokból alkotott 3 elemű vektor, mely-
nek komponensei Sa = σ̂ a/2, ahol a = x, y, z és   σ̂ a a Pauli-
mátrixokat jelöli. A j index adja meg a spinek sorszámát, 
koordinátáját.

Ebben a modellben viszonylag egyszerűen leírhatóak 
a magasabb megmaradó mennyiségek. Az első új meg-
maradó mennyiség például a következő, háromrácspon-
tos operátorsűrűséggel leírható töltés:

		   ( )1 23 j j j

j

Q̂ .+ += ⋅ ×∑S S S 	 (2)

A magasabb töltések bonyolultabb alakúak, de viszonylag 
egyszerűen lehet rájuk egzakt formulákat találni, lásd [2].

A fenti spinláncmodellen kívül számos más rácsmo-
dell is ismeretes. Híres és központi szerepet tölt be az ún. 
Ising-féle kvantumos spinlánc. 1944-ben Lars Onsager 
oldotta meg a kétdimenziós Ising-modellt, ami a sta-
tisztikai fizika egyik központi modellje. A kétdimenziós 
klasszikus rendszer megoldásához szorosan kapcsolódik 
az Ising-spinlánc, melynek Hamilton-operátora a követ-
kező:

		 1 ,z z x
j j

j

ˆ ˆ ˆĤ S S hS+= +∑ 	 (3)

ahol h a transzverzális mágneses tér.
A Heisenberg-modellnek, az Ising-láncnak és más 

integrálható modelleknek is különleges, szokatlan di-
namikai tulajdonságaik vannak. A modellekben jelen 
levő extra megmaradó mennyiségek ahhoz vezetnek, 
hogy az elemi gerjesztések szórási folyamatai teljesen 
elasztikusak. Emiatt tehát nincsen energia- és impulzu-
sátadás az elemi gerjesztések között, a kölcsönhatás csak 
a gerjesztések terjedési sebességét befolyásolja, a szórási 
folyamatokban keletkező kvantummechanikai fázisto-
lásokon keresztül. Ennek következtében ezekben a rend-
szerekben léteznek megmaradó áramok, a megmaradó 
mennyiségek transzportja pedig általában ballisztikus. 
Mindez hasonló a szupravezetés tulajdonságaihoz, bár a 
mögöttes mechanizmus teljesen más.

Ezek és más, ehhez kötődő egzotikus tulajdonságok 
motiválták a kutatókat arra, hogy az integrálható model-
leket kísérletekben is megvalósítsák. Eleinte csapdázott 
hideg atomokkal dolgoztak, és különböző csoportok 
igazolták az integrálható modellek dinamikáját leíró el-
méleteket – lásd például [3–5]. Jelen cikkünkben a hideg 
atomos kísérleteket nem ismertetjük, helyettük a kvan-
tumszámítógépekkel történő kvantumos szimulációkkal 
foglalkozunk.

Fontos, hogy az integrálható modellek mindig finom-
hangoltak: általában bármilyen kis perturbáció (például 
a környezettel való kölcsönhatás) megsérti az extra meg-
maradási törvényeket. Ugyanakkor az integrálhatóság 
sértése lehet olyan kicsi, hogy egy adott kísérlet időtarta-
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ma alatt nem jelentkezik a hatása, és ezáltal a gyakorlat-
ban is tanulmányozni lehet az adott rendszer különleges 
dinamikai tulajdonságait.

3. Spinláncmodellek kvantumos 
szimulációja
Ahhoz, hogy konkrét kísérletekről tudjunk beszélni, elő-
ször pár szót kell szólni a kvantumos számolások kvan
tumáramkörös modelljéről, és hogy ezt hogyan lehet va-
lós idejű dinamika szimulálására használni.

A kvantummechanikában az időfejlődést a Hamil-
ton-operátor generálja. Az úgynevezett analóg kvan-
tumszámítógépekben van lehetőség arra, hogy egy adott 
rendszer folytonos időfejlődését egy választott Hamil-
ton-operátorral lehessen irányítani. Egy ilyen kísérlet-
ben a Hamilton-operátor paraméterei lehetnek előre 
beállított értékek vagy akár időben változóak is. Az idő-
fejlődés maga azonban mindig folytonos.

Ezzel ellentétben a digitális kvantumszámítógépek 
diszkrét idejű dinamikát tudnak szimulálni, és mindez az 
úgynevezett kvantumáramkörös számítási modell kere-
teiben történik. Ez a keret a következőket foglalja magá-
ban.

A kvantumszámítógép a számítás elején a felhasznált 
qubiteket beállítja egy előre kiválasztott, összefonódás 
nélküli állapotba. Ezt követően a számítógép egy- vagy 
kétbites kvantumos kapukkal hat a rendszeren. A válasz
tott kvantumos operációk sorozatát kvantumos algorit-
musnak vagy kvantumáramkörnek nevezzük. A számolás 
végén a rendszer állapotáról mérésekkel lehet informá
ciót kinyerni. A kvantummechanikai mérés valószínűsé-
gi alapú, ezért a pontos információk megszerzése érde-
kében az algoritmust többször egymás után meg is lehet 
ismételni. Egy kvantumáramkör látható az 1. ábrán.

Annak ellenére, hogy a kvantumos algoritmusok 
csak lépésenként történő időfejlődést tesznek lehetővé, 
van arra mód, hogy közelíteni lehessen egy adott Hamil-
ton-operátor által generált folytonos idejű dinamikát. 
Vegyünk például egy olyan spinláncmodellt, ahol csak 
szomszédos spinek hatnak kölcsön! Ilyenkor a Hamil-
ton-operátor általánosságban így írható:

		 1
1

,
L

j , j
j
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ahol ĥj,  j+1 a j és j + 1 indexű spineken ható kölcsönhatási 
tag. A Schrödinger-egyenlet által generált időfejlődést az 
e−i  Ht uniter operátor írja le. Ezt az operátort közelíthetjük 
az ún. Trotter–Suzuki-felbontással, annak is egy speciá
lis változatával. A t véges időt felbontjuk N darab Δt = 
t/N kis időlépésre. Ezután a Hamilton-operátor tagjait 
szétbontjuk két csoportba úgy, hogy egy adott csoporton 
belül az egyes tagok különböző kvantumos biteket érint-
senek:
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Ezután az egyes tagokat külön-külön exponencializáljuk 
a Δt idejű folytonos időfejlesztésre, a következő elrende-
zésben:
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ahol
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A közelítés hibája (Δt)2-tel arányos. Ennek a közelítő el
járásnak az az előnye, hogy az  Ûk, k+1 egy kétrácspontos 
kvantumos kapu, ami különféle digitális kvantumszá-
mítógépeken valódi futtatások során megvalósítható. 
Ezáltal a kvantumszámítógép valóban szimulálni fogja 
az adott Hamilton-operátor által generált dinamikát, ha 
a (6) által leírt műveletek összességét megismételjük N 
alkalommal.

A kvantumos kapuk fenti elrendezését, a kialakuló 
kvantumos számítást „téglafalas kvantumáramkör”-nek 
(brickwork quantum circuit) is szokás hívni, és egy na-
gyon elterjedt algoritmusa a kvantumos szimulációknak. 
Az elnevezés onnan ered, hogy az áramkör ábrázolása 
egy téglafalra emlékeztet (2. ábra).

1. ábra. Példa a kvantumáramkörök ábrázolására  négy qubiten. A füg-
gőleges vonalak felelnek meg a qubiteknek, az ábra alján szerepel a 
bemeneti állapot, a tetején pedig a kimenet. A téglalapok egy-, illetve 
kétrácspontos kvantumos kapuknak felelnek meg

2. ábra. A kvantumos szimulációk téglafal-áramkörös modellje. Az ábra 
alján szerepel a bemeneti állapot, a tetején pedig a kimenet. Az egyes 
kétrácspontos kapuk a (7) egyenlet által leírt uniter operátort valósítják 
meg
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Ezt az elrendezést az elmúlt pár évben használták már 
integrálható kvantumspinláncok vizsgálatára is. Ezek-
ből a kvantumszámítógépes kísérletekből ismertetünk 
lentebb kettőt, melyek az ún. Heisenberg-spinláncokkal 
foglalkoztak. A téglafalas geometriájú kvantumos áram-
körök egy másik típusú alkalmazását (a véletlen kapus 
áramköröket) Rakovszky Tibor cikke tárgyalja [6].

Felmerülhet az olvasóban a kérdés, hogy a (6) egyen-
letben írt közelítés vajon megsérti-e az integrálhatósá-
got. Szerencsére ez a probléma nem áll fenn: be lehet 
bizonyítani, hogy annak ellenére, hogy az egyenlet két 
oldala valóban csak közelítőleg azonos, a jobb oldalon 
lévő szorzat a legtöbb esetben önmagában is egy egzak-
tul integrálható rendszert ír le. Ennek a speciális tulaj-
donságnak köszönhető, hogy a téglafalas kvantumáram-
kör valóban ideális módszer az integrálható spinláncok 
kvantumszámítógépes tanulmányozására.

4. Heisenberg-spinláncok
Az XXZ Heisenberg-spinlánc az egyik legtöbbet vizsgált 
integrálható modell. A Hamilton-operátor, mely az (1) 
egyenletben szereplő operátor anizotrop általánosítása, 
a következő alakot ölti:
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Itt σ̂j
x, y, z a j. rácsponton ható Pauli-operátort jelzi, Δ pe-

dig az úgynevezett anizotrópiaparaméter. A modellben 
megmarad a mágnesezettség z komponense, vagyis a 
Hamilton-operátorral kommutál az
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operátor. Az SU(2) forgatási szimmetriával rendelkező 
eredeti Heisenberg-modellt (vagy másképp: az XXX-
modellt) a Δ = 1 speciális esetben kapjuk vissza.

A következőkben két kísérletet ismertetünk, ame-
lyekben a fenti modellek viselkedését tanulmányozták 
digitális kvantumszámítógépen. Az időfejlesztést mind-
két esetben a téglafalas kvantumáramkör segítségével 
valósították meg.

Mindkét kísérletet a Google Quantum AI részlegén 
valósították meg. A Google kvantumszámítógépei a 
szupravezető qubites technológiát használják. A qubi-
tek két lehetséges állapotát transzmonok kódolják, lásd 
Gyenis András cikkét [7]. A |0〉 állapot az alapállapot, 
míg az |1〉 a gerjesztett állapot. A gerjesztésben részt vesz 
az elektromágneses tér is, emiatt az irodalomban gyak-
ran használják a gerjesztésre a foton kifejezést. Ez azon-
ban nem összekeverendő a vákuumban terjedő fotonnal, 
ugyanis itt egy soktestrendszer kollektív gerjesztéséről 
van szó.

A kísérletben a qubitek egy kétdimenziós rácsban 
helyezkednek el, ahol a szomszédok tudnak egymással 
kölcsönhatni, illetve szomszédos qubitpárokon lehet két-
rácspontos uniter kapukkal hatni. Azonban a kapukat jól 

megválasztva elérhető az is, hogy a rendszer igazából egy 
egydimenziós spinláncot szimuláljon.

4.1. Kötött állapotok elbomlása

Az első kísérletben [8] a Google Quantum AI egyik kvan-
tumszámítógépén, 24 szupravezető qubiten megvaló-
sítottak egy integrálható modellt, az XXZ Heisenberg-
spinlánchoz tartozó téglafalas kvantumáramkört.

A kísérlet célja kettős volt. Egyrészt demonstrálni 
akarták azt, hogy az akkori legjobb technológiával már 
ki lehet mutatni az integrálható modellek speciális dina-
mikai tulajdonságait. Másrészt pedig meg akarták vizs-
gálni az integrálhatóság megsértésének következményeit 
egy konkrét fizikai szituációban. Az alábbiakban ismer-
tetjük a kísérlet elvi hátterét és értelmezését, az olvasó-
nak pedig ajánljuk a [9] összefoglalót is.

Ebben a kísérletben a megmaradási törvényeknek 
egy speciális következményét, a kötött állapotok meg-
maradását vizsgálták. Ismeretes, hogy az XXZ Hei
senberg-spinláncokban az elemi spingerjesztések kö
tött állapotokat tudnak alkotni. A kötött állapotoknak 
ismeretes az egzakt hullámfüggvénye, és mind az 
energiájuk, mind a térbeli kiterjedésük kiszámolható. 
Különleges tulajdonsága a modellnek, hogy a kötött álla
potok energiái bele tudnak nyúlni a spektrumnak azon 
folytonos részébe, amit az azonos számú szeparált ré-
szecskék alkotnak. Ezért egy tipikus nem integrálható 
modellben a kötött állapotok – legalábbis egy részük 
– nem lehetnének stabilak, mert mindenféle dinami-
kai folyamat során elbomlanának a kontinuumba. Ezzel 
ellentétben a Heisenberg-spinlánc extra megmaradó 
mennyiségei meggátolják a kötött állapotok elbomlását, 
és ezek teljesen stabilak maradnak minden nemegyen-
súlyi folyamatban.

A kísérletben ezt a stabilitást tesztelték. Az ötlet az 
volt, hogy vették a spinlánc ferromágneses állapotát, 
amit a részecskék nyelvén a vákuumként lehet értel-
mezni. A kvantumbitek nyelvén ezt például L darab |0〉 
állapotú qubittel lehet leírni. Ezután preparáltak n darab 
részecskét egymás melletti pozíciókban, a részecskéket 
a qubitek |1〉-es állapota kódolta. Ezután futtatták a tég-
lafalas kvantumáramkört, majd megmérték a rendszer 
qubitjeinek az állapotát későbbi időpontokban.

Az eredetileg preparált szorzatállapot nem sajátálla-
pota a rendszernek, emiatt kialakult egy nemegyensúlyi 
dinamika. A kezdeti állapotnak nagy átfedése van az n 
részecskés, különböző impulzusú egzakt kötött állapo-
tokkal. Ezek a kötött állapotok nem tudnak elbomlani. 
Ezért ha egy későbbi időpontban megmérték az egyes 
qubitek állapotát, akkor viszonylag nagy valószínűség-
gel kaptak olyan bitsorozatokat, amelyekben a részecs-
kék (az 1-es bitek) egymáshoz közeli helyeken voltak. 
Más szavakkal: a kutatók azt tapasztalták, hogy az ele-
mi részecskék tényleg nem tudtak kiszabadulni a kötött 
állapotból. Ez pedig a rendszer integrálhatóságát de-
monstrálja.
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A mérést ezután lefuttatták olyan kezdeti állapotok-
ból is, ahol az eredeti részecskék egymástól távolabb 
vannak, majd a kvantumáramkör futtatása után szintén 
megmérték a rendszert. Ilyenkor azt tapasztalták, hogy 
a  részecskék külön-külön bejárták a rendelkezésre álló 
teret. Vagyis önállóan mozgó (bár egymással kölcsön
ható) részecskék dominálták a dinamikát.

Ezután pedig az integrálhatóság sértését egy külön
leges ötlettel vizsgálták. A spinlánchoz hozzácsatoltak 
még extra qubiteket is, amelyekre külön kétrácspontos 
kapukkal hatottak. Az így nyert időfejlesztő operátor 
nem volt már integrálható. Ennek ellenére azt tapasz-
talták a kísérletben, hogy a kötött állapotok sokáig épek 
maradtak annak ellenére, hogy már nem voltak érvé-
nyesek a megmaradási törvények. Ez meglepő kísérleti 
eredmény volt, ugyanis a geometria megváltozása miatt 
az integrálhatóság sértése „nagynak” tűnik, és ezért az 
volt a várakozás, hogy a kötött állapotok rövid idő alatt 
elbomlanak.

Később egy másik kutatócsoport egy hagyományos 
számítógépen elvégzett numerikus munkával igazol-
ta, hogy a kötött állapotok látszólagos stabilitása végül 
is csak egy véges méretű effektus volt, ami nagy mére-

tű spinláncok esetében fokozatosan eltűnik [10]. Ezen 
utóbbi munka miatt mondhatjuk, hogy végeredményben 
ebben a problémában a klasszikus számítógép egyelőre 
hatékonyabb, mint a kvantumos. Mindamellett a kísérlet 
fontos mérföldkő volt, ugyanis ez volt az első eset, hogy 
az integrálhatóság következményeit digitális kvantum-
számítógépen is meg lehetett már figyelni.

4.2. További kísérletek

Egy későbbi kísérletben a Google Quantum AI az integ-
rálható modellek nemegyensúlyi dinamikáját vizsgálva 
olyan eredményekhez is eljutott, amiket korábban ha-
gyományos számítógéppel nem sikerült elérni [11]. En-
nek a kísérletnek és a vizsgált dinamikai effektusnak a 
részletesebb ismertetése már túlnyúlik ezen cikk kere
tein, ezért itt csak nagyon tömören összegezzük az ered-
ményeket.

A [11] cikkben a kutatók téglafalas kvantumáram
kör segítségével tanulmányozták az XXX spinlánc nem
egyensúlyi spintranszportját 46 szupravezető qubiten. 
Ez azért nagyon érdekes probléma, mert van egy jelen-
leg is folyó vita a kutatók között, hogy a spintranszport 
milyen univerzalitási osztályba tartozik. A problémának 
egzakt megoldása egyelőre még nincsen, a klasszikus 
számítógépen elvégzett numerikus számolások pedig 
nem kielégítő minőségűek a számítás bonyolultsága mi-
att. Végül a [11] kísérlet egy döntő információt tett hozzá 
a kérdéshez: megmutatták, hogy bár a spintranszportot 
látszólag a 3/2-es dinamikai exponenssel leírható ún. 
Khardar–Parisi–Zhang- (KPZ-) skálázás írja le, a ma-
gasabb rendű kumulánsok már eltérést mutatnak a 
KPZ-alaktól. A kísérlet ezzel egy olyan választ tudott 
megadni, amely a klasszikus számítógép számára túl 
nehéz volt.

5. További kutatási irányok
Az integrálható modellek kvantumszámítógépen tör-
ténő vizsgálata továbbra is aktív kutatási terület, amely 
számos kihívást tartogat. Ezek közül most megemlítünk 
néhány kutatási irányt.

Nyitott kérdés az integrálható modellek egzakt saját
állapotainak belső komplexitása. A konkrét kérdés az, 
hogy milyen komplex kvantumos algoritmusokkal lehet 
preparálni egy egzakt sajátállapotot. Egy nem integrál
ható modellben az állapotokat preparáló kvantumos 
algoritmus számítási igénye a részecskék számával ex-
ponenciálisan növekszik, azonban az integrálható model-
lekben talán csak polinomiális a komplexitás növekedése. 
Ez egy elméleti kérdés, aminek viszont lehet alkalmazása 
a kvantumos fölény demonstrálásának szempontjából. 
A szerző aktívan foglalkozik ezzel a kérdéssel [12, 13].

Nyitott kérdés, hogy az integrálható modelleket fel 
lehet-e használni a kvantumszámítógépek hatékony tesz-
telésére (benchmarking). Ha az integrálható modellek-
ben analitikusan (papíron vagy klasszikus számítógépen 

3. ábra. Kiemelt részlet a [8] cikk eredményeiből. A kísérletek során a 
spinláncon a fent látható kezdeti elrendezéseket választották, kettő, il-
letve három |1〉 állapotú qubittel. Ezután futtatták a kvantumos áramkört 
többször, N számú cikluson át. A részecskék helyzetét minden egyes 
futtatás után megmérték, ezt sokszor megismételték, és ábrázolták a ré-
szecskék távolságának (a köztük levő rácspontok számának) valószínű-
ségi eloszlását. Azt tapasztalták, hogy a bal oldali esetekben (kék szín) 
kicsi maradt a valószínűsége annak, hogy a részecskék eltávolodjanak 
egymástól, vagyis a kötött állapot egyben maradt. Ezzel ellentétben a 
jobb oldali esetekben (sárga szín) kellő számú futtatás során egyenletes 
eloszlás alakult ki, ami annak felel meg, hogy különálló részecskék mo-
zogtak a láncon
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hatékonyan) is ki tudunk számolni fizikai mennyisége-
ket, akkor ezek segítségével tesztelhetővé válnak a kvan-
tumszámítógépek.

További érdekes téma a kvantumos korrelációk kí-
sérleti vizsgálata akár egyensúlyban, akár nemegyensú-
lyi dinamika során. Erre példa a fenti második kísérlet, 
azonban még sok olyan szituáció van, ahol az integrál
ható modellek egzotikus hatványkitevővel leírható, al-
gebrailag csökkenő korrelációkkal bírnak.

Összefoglalásként kijelenthető, hogy a digitális kvan-
tumszámítógépek technológiája mára már elérte azt a 
szintet, hogy érdekes fizikai jelenségeket lehessen velük 
vizsgálni, az integrálható modellek világa pedig alkalmas 
terepnek bizonyul mindehhez. Így találkozik egymás-
sal az egzakt elméleti számolások világa és a kvantumos 
szimulációk Feynmanig visszanyúló elgondolása. Az in-
tegrálható modellek gyakorlatilag egyidősek a kvantum

mechanikával, és úgy tűnik, hogy a legújabb technoló
giai fejlődés során is hasznosnak bizonyulnak.
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Bevezető: a kvantuminformáció 
dinamikája zárt rendszerekben
a nagyszámú egymással kölcsönható részecskéből álló 
makroszkopikus rendszerekkel foglalkozó kvantu-
mos soktestfizika hagyományosan főleg a hőmérsékleti 
egyensúlyban vagy ahhoz közel lévő rendszerek leírásá-
ra koncentrált, amelyekben a statisztikus fizika alap elvei 
érvényesülnek. ezen túlmutat az egyensúlytól távoli 
rendszerek leírásának problémája. Hagyományosan ezek 
mint nyílt rendszerek jelennek meg, amelyek energiát és 
információt cserélnek a környezetükkel. ehhez képest a 
kvantumos soktestfizikának egy egészen új terepét jelen-
ti a nemegyensúlyi zárt kvantumrendszerek problémája, 
amely az elmúlt évtizedek kísérleti áttöréseinek eredmé-
nyeképpen került a kutatások előterébe.

ezen áttöréseknek hála ma már számos különbö-
ző kísérleti platform (hideg atomok, csapdázott ionok, 
szupravezető áramkörök stb.) áll rendelkezésre, amelyek 
olyan mértékben elszigeteltek a környezetüktől, hogy 

viselkedésük egy aránylag hosszú időskálán jól leírható 
a kvantummechanikai Schrödinger-egyenlettel, anélkül 
hogy a környezeti dekoherencia elrontaná a rendszer 
koherens kvantumos viselkedését. ugyanezeken a plat-
formokon egyszesrmind a kísérletezők sokkal erősebb 
kontrollt gyakorolhatnak a rendszer viselkedése fölött 
a megszokott szilárdtestfizikai kísérletekhez képest. en-
nek segítségével különböző, egyensúlytól távoli kezdő-
állapotokat tudnak létrehozni, illetve kontrollált módon 
tudnak kölcsönhatásokat indukálni a különböző részecs-
kék között. mindez egy sor izgalmas új fizikai kérdést vet 
fel azzal kapcsolatban, hogy hogyan fejlődik időben egy 
ilyen zárt, erősen kölcsönható kvantumos rendszer.

Különösen érdekes annak a vizsgálata, hogy a rend-
szer időfejlődése során hogyan alakulnak ki különféle 
kvantumos korrelációk a rendszer alkotóelemei között, 
különös tekintettel a kvantum-információelméletben 
kulcsszerepet játszó kvantumos összefonódásra. az idő 
előrehaladtával a kölcsönhatások következtében össze-
fonódás alakul ki kezdetben csak a térben egymáshoz 
közeli, később pedig egyre távolabbi részecskék között. 
Hogyan tudjuk leírni az összefonódás dinamikáját zárt 
kvantumrendszerekben? Követ-e a viselkedése olyan 
univerzális szabályszerűségeket, amelyek a fizikai rend-
szerek valamilyen nagyobb osztályára egyaránt jellem-
zőek?

az ilyen kérdések megválaszolását nehezíti a rendel-
kezésre álló elméleti eszköztár szűkössége. míg példá-
ul egyensúlyi kvantumos soktestrendszerek leírására a 
numerikus módszerek széles arzenálja áll rendelkezésre 

 
Rakovszky Tibor 2024 óta a Bme elméleti fizi-
ka tanszék docense, marie Curie-ösztöndíjas 
kutató, a Hun-ren „Kvantumos hibajavító kó-
dok és nemegyensúlyi fázisok” Kutatócsoport 
vezetője. ezenfelül tagja a 2025-ben megalakult 
Hun-ren–Bme–BCe Kvantumtechnológia 
Ku tatócsoportnak. 2020 és 2024 között a Stan-
ford egyetemen volt posztdoktori kutató, dok-
tori tanulmányait pedig a müncheni műszaki 
egyetemen (tu münchen) végezte. Kutatási 
területe a kvantumos soktestrendszerek vizs-
gálata, különös tekintettel azok nemegyensúlyi 
viselkedésére, illetve a kvantumos hibajavítás.

https://arxiv.org/pdf/2411.02519
https://arxiv.org/pdf/2411.15132
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(pl. Monte Carlo-módszerek,  illetve tenzorhálózatok), 
ugyanezen módszerek az egyensúlytól távol általában 
csak igen rövid időskálákon adnak megbízható ered-
ményt – többek között éppen a részecskék közötti erős 
összefonódás miatt! Bár ezek a rövid idejű szimulációk 
is sok hasznos információt szolgáltatnak, mégis szükség 
van olyan egyszerű modellekre, amelyekben a rendszer 
dinamikáját hosszabb skálákon tudjuk követni, de ame-
lyek mégis betekintést tudnak nyújtani a fent említett 
univerzális törvényszerűségekbe. Ilyen egyszerű modellt 
nyújtanak különféle kvantumos áramkörök, amelyek 
egyszersmind a kvantum-számítástudomány problémái 
felé is összekötő kapocsként szolgálnak. A továbbiakban 
ezekről lesz szó.

Kvantumos áramkörök
Egy zárt kvantumos rendszert vizsgálunk, amelynek 
kvantumállapota, |ψ 〉 a jól ismert időfüggő Schrödin-
ger-egyenletet követi:

		 ( )t
ˆt iH .ψ ψ∂ = − 	 (1)

Itt, ahogy ezentúl végig, ħ = 1 egységrendszerben dol-
gozunk, és Ĥ  a Hamilton-operátor, amely fizikailag a 
rendszer összenergiájának felel meg, és tartalmazza a 
részecskék közötti különféle kölcsönhatásokat, illetve a 
különféle külső (pl. elektromágneses) terek rájuk gyako-
rolt hatását.1

A jelen cikkben olyan rendszerekkel foglalkozunk, 
ahol a részecskék térbeli helyzete egy szabályos rácsot 
alkot, amelyet időben rögzítettnek tekinthetünk (pl. hi-
deg atomos kísérletekben az atomok egy lézerekkel lét
rehozott ún. „optikai rácsban” helyezkednek el). A ré-
szecskék mozgásállapotát tehát elhanyagoljuk, és csupán 
belső szabadsági fokaikra (pl. egy atom legkülső elekt-
ronjának állapotára) fókuszálunk: ezek állapotát írja le 
a |ψ 〉 hullámfüggvény. Legyen egy adott rácspontban 
a lehetséges belső állapotok száma q; a legegyszerűbb 
nem triviális esetben q = 2, tehát minden részecskét két 
belső szabadsági fokkal írhatunk le. Ezeket tekinthetjük 
pl. egy effektív spin „fel” és „le” állapotainak (ebben az 
értelmezésben q > 2 egy magasabb spinű részecskének 
felel meg). Ez a q = 2 eset tipikus a kvantuminforma
tika kontextusában, ahol egy ilyen kétállapotú rendszer 
egy kvantumos bitnek, avagy qubitnek felel meg. Ebben 
a kontextusban a q > 2 esetre mint „qudit”-re szokás hi-
vatkozni. Az alábbiakban mi is ezt az elnevezést fogjuk 
használni.

Az (1) Schrödinger-egyenlet megoldása |ψ (t)〉 = 
e – iĤ  t|ψ (0)〉 alakú, ahol az időfejlesztést az Û(t) = e – iĤ  t 
uniter operátor hajtja végre. Mit mondhatunk ennek az 
időfejlődésnek a struktúrájáról?

A térbeli lokalitás elve alapján a Ĥ  Hamilton-ope-
rátor csak az egymáshoz közeli rácspontokban lévő ré-

1 �M ivel a rendszert zártnak tekintjük, a rendszer részecskéinek ezen 
külső terekre gyakorolt visszahatását elhanyagoljuk.

szecskék közötti kölcsönhatásokat tartalmaz.2 Ilyen 
lokális Hamilton-operátorokra érvényes az ún. Lieb–
Robinson-tétel [1]. Ennek értelmében az időfejlődés 
során a korrelációk a rendszerben valamilyen véges vLR 
sebességgel terjednek, vagyis t idő után az adott helyen 
lévő részcske csak a tőle legfeljebb vLR t távolságban lévő 
részecskékkel tud nem elhanyagolható mértékű korrelá-
ciót kialakítani, ettől távolodva a korrelációk exponen-
ciálisan lecsengenek.3 Ez hasonlít a speciális relativitás
elméletben megszokott helyzetre, ahol a fizikai hatások 
legfeljebb a fénysebességgel terjednek; az általunk vizs-
gált lokális operátorok esetén vLR játssza egy emergens 
„fénysebesség” szerepét.

Tovább egyszerűsíthető a probléma az időfejlesztő 
operátor „diszkretizálásával”. Erre kínál lehetőséget a 
Solovay–Kitaev-tétel [2], amelyre építve bármely uni-
ter operátor tetszőleges pontossággal közelíthető olyan 
uniter operátorok szorzataként, amelyek egyszerre csak 
egy vagy két részecskén hatnak. Ez alapozza meg az 
univerzális kvantumszámítógép gondolatát, amelyben a 
Hilbert-téren ható tetszőleges uniter operátor előáll egy 
elemi operációkból felépített kvantumáramkör formá
jában; az áramkört alkotó egy- és kétqudites uniter ope-
rátorokat a „kvantumkapu” elnevezéssel illetik.

Az időfejlesztő Û(t) = e – iĤ  t operátort ilyen áramköri 
alakban felírva könnyen elérhetjük a Lieb–Robinson-
tétel által megkövetelt lokalitást, ha csak olyan kapukat 
engedünk meg, amelyek egymáshoz közeli (pl. szom-
szédos) rácspontokon hatnak. A legegyszerűbb ilyen 
áramkört, amelyben a kapuk egy egydimenziós rácson 
„téglafal” elrendezésben helyezkednek el, az 1. ábra 
szemlélteti. Jól látható, hogy egy ilyen áramkörben a fi-
2 � Pontosabban előfordulhatnak kölcsönhatások távoli részecskék 

között, de ezek erőssége gyorsan – általában exponenciálisan – le-
cseng a távolsággal.

3 � A pontos állítást általában a Heisenberg-képben szokták megfogal-
mazni. Eszerint, ha A egy lokális operátor, amely A(t) = eiĤtA e–iĤt 
módon időfejlődik, B pedig egy másik lokális operátor tőle d tá
volságra, akkor az [A(t),  B] kommutátor jó közelítéssel eltűnik, ha 
d >> vLRt.

t

1. ábra. Két quditen ható uniter kapukból álló „téglafal geometriájú” 
kvantumos áramkör egy dimenzióban. Egy véletlen áramkör esetén a 
kapukat valamilyen véletlen eloszlásból választjuk
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zikai hatások véges sebességgel kell, hogy terjedjenek. 
A  t  idő az áramkör „mélységének”, avagy az  azt alkotó 
rétegek számának felel meg. A Lieb–Robinson- és a Solo-
vay–Kitaev-tételeket kombinálva tehát elmondhatjuk, 
hogy a lokális hamiltoni időfejlődés struktúráját jól meg-
ragadják az ilyen áramkörök.4

A kvantumdinamika megértésében jelentős előre
lépést hozott az ilyen lokális kvantumáramközök vizs-
gálata. Ehhez arra volt szükség, hogy az áramkörmodellt 
elvonatkoztassuk a fenti motivációtól, és egy olyan ál-
talánosabb esetet vizsgáljunk, ahol az áramkört alkotó 
kapuknak valamilyen általánosabb, nem pedig infinite-
zimális idejű hamiltoni időfejlődésből származó uniter 
operátorokat választunk. Ezzel feláldozzuk az eredeti 
probléma egyes elemeit (elsősorban az energiameg
maradást; lásd lentebb), cserébe azonban a kapuk 
megfelelő megválasztása esetén olyan leegyszerűsített 
modelleket kapunk, amelyekben sok minden egzaktul 
kiszámítható. Az ilyen áramkörmodellek fontos fogó-
dzót kínálnak a kvantumos dinamika megértéséhez, 
és sok esetben a belőlük levont következtetések az ere-
detileg vizsgált hamiltoni dinamikára is érvényesek. A 
továbbiakban ezen áramkörmodelleknek egy fontos 
osztályával, az ún. véletlen kvantumáramkörökkel fog-
lalkozunk.5

Ahogy a név is mutatja, a véletlen áramkörös mo-
dellben az áramkört alkotó kapuk nem valamilyen fix 
(„determinisztikus”) uniter operátornak felelnek meg, 
hanem azokat véletlenszerűen választjuk a kétqudites 
uniter operátorok halmazából. Egy ilyen modell tehát 
nem egy konkrét áramkör, hanem hasonló geometriai 
struktúrájú áramkörök statisztikus sokasága. Azt vizs-
gálva, hogy ennek a sokaságnak egy „tipikus” tagja ho-
gyan viselkedik, betekintést nyerünk a lokális dinamika 
univerzális tulajdonságaiba.

A fenti leírás a lehetséges modelleknek még mindig 
egy tág osztályát engedi meg, hiszen megadhatjuk, hogy 
az áramköröknek milyen halmazát vizsgáljuk, és hogy a 
lehetséges áramkörökhöz milyen valószínűségeket ren-
deljünk. Az alábbiakban áttekintjük a legegyszerűbb 
esetet, majd megemlítjük néhány fontos általánosítását.

Maradjunk tehát az 1. ábrán látható egydimenziós 
„téglafalas” geometriájú áramköröknél. A problémát 
tovább egyszerűsíthetjük, ha az áramkörben szereplő 
kapuk mindegyikét egymástól függetlenül választjuk a 
kétqudites uniter operátorok közül. Továbbá mindegyik 
kaput ugyanabból az eloszlásból választjuk: így tehát –
bár egy konkrét áramkör térben és időben inhomogén 
(különböző helyeken különböző kapuk) – az áramkörök 
sokasága mégis statisztikusan homogén és invariáns a 
tér- és időbeli eltolásra.

Már csak egy dolgot kell rögzítenünk: azt a valószí
nűségi eloszlást, amelyből a kapukat választjuk. A kapuk 

4 �U gyanezen áramkörmodellnek a Schrödinger-egyenletből való leve-
zetésével kapcsolatban ajánljuk Pozsgay Balázs cikkét a Fizikai Szemle 
ugyanezen számában.

5 �A z áramkörmodelleknek egy másik fontos osztályára példa [3].

két quditen hatnak, így a q2 × q2 méretű uniter mátrixok 
halmazán kell egy eloszlást definiálnunk. Szerencsére 
erre kínálkozik egy természetes választás, a Haar Alfréd 
magyar matematikusról elnevezett Haar-eloszlás. Ennek 
definiáló tulajdonsága, hogy invariáns egy tetszőleges 
uniter mátrixszal való szorzásra: ha μH(Û) a Haar-el-
oszlásban a valószínűségi mértéke egy Û uniternek, és 
V̂  egy tetszőleges, rögzített uniter mátrix, akkor μH(Û) =  
μH(ÛV̂   ) = μH(V̂   Û). A Haar-eloszlás tehát egyenletes 
az uniter mátrixok halmazán. Ha az áramkör min-
den elemét (egymástól függetlenül) a Haar-eloszlás-
ból választjuk, akkor kapjuk az ún. Haar-féle véletlen 
kvantumáramkört. A következő fejezetben ezt vesszük 
közelebbről szemügyre.

A kvantumdinamikától a statisztikus 
fizikáig és vissza

Fentebb azt állítottuk, hogy a véletlen áramkörök sok-
szor egzakt megoldásokhoz vezetnek. Most röviden vá
zolunk erre egy példát, amely megmutatja, hogy a vélet-
len áramkörök érdekes kapcsolatot létesítenek a fizika 
két távolinak tűnő ága, a kvantumos dinamika és a klas�-
szikus egyensúlyi statisztikus fizika között: az utóbbi jól 
ismert eredményei átültethetők az előbbi kontextusába. 
Alább egy konkrét számításon keresztül mutatjuk be ezt 
a konstrukciót – emiatt a cikk ezen része a többihez ké-
pest több technikai részletet tartalmaz. További részle-
tek találhatóak a [4] hivatkozásban.

Mint a bevezetőben jeleztük, célünk annak megér-
tése, hogy hogyan alakul ki kvantumos összefonódás a 
rendszert alkotó részecskék között. Az összefonódás jel-
legzetessége, hogy bár az egész rendszer (amelyet zártnak 
tekintünk) egy tiszta kvantumállapottal (a Hilbert-tér egy 
egységvektorával) írható le, a részrendszereit már kevert 
állapotokkal (matematikailag: sűrűségmátrixokkal, azaz a 
Hilbert-téren ható pozitív definit, egységnyi nyomú ope-
rátorokkal) tudjuk csak leírni.6 Az  A-val jelölt részrend-
szerhez (azaz a quditek valamilyen részhalmazához) tarto-
zó ρ̂A sűrűségmátrixot megkapjuk mint az egész rendszer 
állapotának „részleges nyomát”: ρ̂A = TrA– (|ψ 〉 〈ψ|), ahol 
A– az a A részrendszer komplementumát jelöli.

Az összefonódás egyik lehetséges mérőszáma a ρ̂A 
sűrűségmátrix ún. „tisztasága” (purity), PA = TrA  (ρ̂A

2). 
Minél kisebb PA értéke, annál erősebb az összefonódás 
az  A és az A–-beli részecskék között. Azt várjuk tehát, 
hogy a kölcsönható kvantumos rendszer dinamikája 
során PA időben egyre csökkenni fog, míg végül vala-
milyen kis értéken szaturálódik, ami az összefonódás 
maximális mértékének felel meg. A Haar-féle véletlen 
áramkörös modell segítségével képesek vagyunk ezt az 
intuíciót egzakt számolássá konvertálni.

Legyen Û egy t mélységű uniter áramkör, |ψ0 〉 pedig 
a rendszer kezdőállapota; az időfejlesztett állapot tehát 
6 �A  tiszta és kevert kvantumállapotok közötti különbségre lásd Kormos 

Márton cikkét a Fizikai Szemle 2025. áprilisi számában.
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|ψ (t)〉 = Û |ψ0 〉. Célunk a következő mennyiség megha-
tározása:

  † †
0 0 0 0( (tr) ( ) )tr trA A A A

ˆ ˆ ˆ ˆt U U U U .ψ ψ ψ ψ = ⋅ P  (2)

A fenti kifejezés függ az Û áramkörtől, amely láthatóan 
négyszer jelenik meg, ebből kétszer komplex konjugálva. 
Ha a tisztaság átlagos viselkedését akarjuk megérteni, 
átlagolva a véletlen áramkör különböző realizációira, 
akkor tehát szükségünk lesz ennek a „megnégyszere-
zett” uniter operátornak az átlagára. Itt azonban segít-
ségünkre van az a feltevésünk, hogy az áramkör kapui 
egymástól függetlenek, így az átlagolást elvégezhetjük 
az egyes kapukra külön-külön. Legyen u egy ilyen uniter 
kapu! Amire ezek után szükségünk van, az az alábbi ki-
fejezés (a véletlen eloszlásra való átlagolást felülvonással 
jelöljük):

		
1 1 2 2 3 3 4 4 1 2 3 4 1 2 3 4[ ] ,* * **

a b a b a b a b a a a a ,b b b bu u u u u u u u= ⊗ ⊗ ⊗ 	 (3)

ahol az alsó indexek mind 1-től q-ig terjedő értékeket 
vehetnek fel. Mint azt a (3) jobb oldalán jeleztük, ez az 
operátor egy megnégyszerezett, (q2)4 dimenziós Hil-
bert-téren hat.

Szerencsére a Haar-eloszlás (3) típusú momentumai-
ra jól ismert formulák állnak rendelkezésre. Ezekből azt 
kapjuk, hogy a keresett átlag két tag összege, ahol mind-
két tag egy-egy projektornak felel meg a négyszeres Hil-
bert-téren. Azaz pontosan két állapot van (a négyszeres 
Hilbert-térben, amit duplázott kacsacsőrrel jelölünk), 
amely minden u operátor esetén invariáns az [u ⊗ u* ⊗ u 
⊗ u*] kifejezéssel való szorzásra:
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Az ennnek a két állapotnak megfelelő projektort P+-szal 
és P–-szal jelölve azt kapjuk, hogy

		 * *u u u u P P P .σ
σ

+ −
=±

⊗ ⊗ ⊗ = + =∑ 	 (5)

Így tehát – bár egy q8 di-
menziós Hilbert-térből in-
dultunk  – az átlagolás után 
az eredményt egyetlen bi-
náris változóval, σ-val jelle-
mezhetjük.

Ahhoz, hogy meg-
kapjuk a (2) egyenletben 
definiált PA(t) mennyisé-
get, a fenti átlagolást az 
áramkör minden kapujára 
külön-külön el kell végez-
nünk, így ha az áramkör 
N  kapuból áll, akkor egy 
2N tagból álló összeget ka-
punk. Az összeg tagjait a 
σi = ± változókkal inde-

xelhetjük, ahol i = 1, …, N jelöli, hogy melyik kapuról 
van szó. Ezekre a σi-kre egy-egy klasszikus spin két le-
hetséges állapotaként gondolhatunk. Az összeg tagjai 
levezethetőek a (4) definíciókból, és azt kapjuk, hogy 
mindegyik tag pozitív valós számnak adódik. Így tehát 
arra a meglepő következtesétre jutunk, hogy a tisztaság 
a Haar-áramkörben megegyezik egy klasszikus statisz
tikus fizikai spinmodell állapotösszegével:
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(lásd a 2. ábrát). Az áramkör struktúrájából adódik, 
hogy a H klasszikus energia lokális lesz, és belátható, 
hogy egy ferromágneses Ising-modellhez fog hasonlí
tani.

A klasszikus statisztikus modell a fizikai kvan-
tumrendszerhez képest eggyel magasabb dimenziójú, 
ahol az  extra dimenzió az időnek (az áramkör mélysé-
gének) felel meg. Ebben az irányban a határfeltételek 
nem periodikusak, hanem a (2) egyenletből adódnak. 
Az egyenletet megvizsgálva azt kapjuk, hogy a tiszta-
ság definíciójában megjelenő nyomok (trace-ek) éppen 
megfelelnek a négyszeres Hilbert-tér (4) egyenletben 
definiált kétféle állapottal való belső szorzatnak: az A 
részrendszerben a  ||–〉〉 állapot jelenik meg, míg az A–-
ban a ||+〉〉 állapot (2. ábra). Ha A egy térben összefüg-
gő régió, ez éppen egy doménnak felel meg a klasszikus 
spinmodell felső határfelületén. A másik határfelület ha-
tárfeltételét a kezdeti |ψ0 〉 állapot határozza meg; a leg-
egyszerűbb esetben, amikor a kezdőállapot nem tartal-
maz semmilyen összefonódást, ún. szabad határfeltételt 
kapunk, azaz minden lehetséges spinkonfigurációra ös�-
szegeznünk kell.

A statisztikus fizikai problémára való leképezés hasz-
nos perspektívát nyújt az összefonódás dinamikájára 
nézve. A felső határfeltétel egy mágneses doménfalat 
indukál a σ = + és a σ = – régiók között. A kulcsfontos
ságú megállapítás az, hogy, a spinek közötti ferromág
neses kölcsönhatások következtében a –log  PA(t) 
„szabadenergia” arányos lesz ennek a doménfalnak a 
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2. ábra. Leképezés a kvantumállapot tisztaságáról a Haar-féle véletlenáramkör-modellben egy klasszikus 
spinmodell állapotösszegére (Forrás: [4])
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felületével, vagyis a nagyobb doménfal nagyobb kvan
tumos összefonódásnak felel meg. Ennek a viselkedésé-
ben két különböző tartományt különböztethetünk meg, 
attól függően, hogy a t idő (amely most a klasszikus 
spinmodell térbeli kiterjedését adja meg a domén-határ-
feltételre merőleges irányban) kisebb vagy nagyobb-e, 
mint az A részrendszer átmérője.

Az első esetben a domén lényegében a felületre me-
rőlegesen terjed ki a rendszer tömbi része felé (3a. ábra), 
így felületére ≈ t |∂A| adódik, ahol |∂A| az A régió ha-
tárfelületének mérete. Ezzel szemben, amikor t sokkal 
nagyobb A átmérőjénél, akkor a domináns kontribúció 
az, amikor a domén a rendszer felületéhez közel marad 
(3b. ábra), és felülete arányos |A|-val. Előbbi annak felel 
meg, hogy az összefonódás időben növekszik, ahogy az 
A részrendszert alkotó részecskék összefonódnak a rajta 
kívüli részecskékkel, míg utóbbi azt jelzi, hogy az össze-
fonódás szaturálódik, amikor a részrendszer tisztasága 
elérte a lehetséges minimumát.

A két szakasz közötti átmenet akkor következik be, 
amikor t ~ |A|/|∂A|, azaz A  átmérőjével arányosan nö-
vekszik. Ebből definiálhatunk egy ún. „összefonódá-
si sebességet”, amely az összefonódás kialakulásának 
gyorsaságát jellemzi, és amelynek értéke különbözik a 
Lieb–Robinson-sebességtől (vE < vLR). Az egydimen
ziós esetben (ahol a statiszikus modell egy kétdimen-
ziós Ising-modellel analóg) az állapotösszeg egzaktul 
kiszámítható és az összefonódási sebesség értéke meg-
határozható.

Bár a fenti számolás a tisztaságra mint legkönnyeb-
ben számolható mennyiségre fókuszált, hasonló meg-
fontolások érvényesek az összefonódás más jellemzőire, 
például az ún. Neumann-entrópiára is. Ennek számításá
nál az Û áramkör összes hatványa megjelenik, ami nagy-
ban megnehezíti a számolást, azonban részleges eredmé-
nyek elérhetőek egy 1/q szerinti sorfejtés alakjában abban 
az esetben, amikor a qudit q dimenziója végtelenhez tart. 
Az így kapott eredmények alátámasztják, hogy a Neu-
mann-entrópiára is érvényes egy doménfalas kép.

Bár ezt a doménfalas képet a Haar-áramkör tulaj-
donságaiból vezettük le, valódi fontosságát az adja, hogy 
általánosítható más fizikai rendszerekre is, beleértve a 
hamiltoni dinamikát is, amint az numerikus számítá-
sokkal és elméleti megfontolásokkal alátámasztható. 
Így tehát a véletlen áramkör általános kvalitatív képet 
ad, amely a kvantumos dinamika bizonyos univerzális 

tulajdonságait ragadja meg. Ehhez hasonló kvalitatív 
leírások vezethetőek le más fizikai mennyiségekre is. 
Összességében ezek a kvantuminformáció terjedésé-
nek egyfajta „hidrodinamikai” leírását adják (bizonyos 
mennyiségek esetén konkrétan klasszikus hidrodinami-
kai egyenletek, pl. aszimmetrikus diffúzió alakját öltik).

Variációk egy témára
Az előző fejezetben vázolt számolás a véletlen áramkö-
rök erényeit illusztrálja. Az elmúlt években tudományos 
cikkek sokasága épített az ehhez hasonló megfontolá-
sokra. Ezek részben a fentihez hasonló Haar-áramkörök 
különböző tulajdonságait vizsgálják, részben a modell-
nek olyan módosításait tekintik, amelyek segítségével 
újabb fizikai effektusok vehetőek figyelembe. Most ezen 
kutatási irányok közül foglalunk össze néhányat.

Véletlen áramkörök és a kvantumfölény. A véletlen uniter 
áramkörök nagy szerephez jutottak a kvantum-számí-
tástudományban is mind elméleti, mind kísérleti szem-
pontból. Ennek az adott jelentős lökést, hogy ezek olyan 
számítási problémákhoz vezetnek, amelyek klasszi-
kus számítógépen nem szimulálhatóak hatékonyan [5]. 
Szemben pl. a Shor-algoritmussal, ezek nem kecsegtet-
nek gyakorlati haszonnal, viszont már a jelenleg elérhető 
kvantumszámítógépeken is megoldhatóak, így használ-
hatók a gépek tesztelésére.

Egy tipikus példa az ún. mintavételezési probléma. 
A véletlen áramkör által létrehozott összefonódott kvan
tumállapoton méréseket végezve a mérési eredmények-
re egy erősen korrelált valószínűségi eloszlás adódik. 
Ezt az eloszlást nehéz reprodukálni egy klasszikus algo-
ritmussal, legalábbis akkor, ha a kvantumállapot kellően 
összefont (az áramkör nagy mélységű). Ezen az ötleten 
alapult a Google kvantumszámítógépes csoportjának 
kísérlete 2019-ben, amelynek kapcsán bejelentették 
az ún. „kvantumfölény” elérését, azaz  végrehajtottak 
egy olyan számítást, amelyet állításuk szerint a létező 
legnagyobb klasszikus szuperszámítógépek sem tudná-
nak belátható idő alatt reprodukálni [6]. Ezen számítási 
problémák vizsgálatánál a fentiekhez hasonló klasszikus 
statisztikus fizikai megfontolások is szerepet kapnak.

Kvantumkáosz. Az (1) Schrödinger-egyenletet jól jel
lemzik a Ĥ Hamilton-operátor sajátértékei és sajátvek-
torai. A fent vizsgált véletlen áramkörben ezek nem jól 
definiáltak, hiszen az időfejlesztő operátor időben folya-
matosan változik. Ezt azonban orvosolhatjuk, ha a mo-
dellt úgy módosítjuk, hogy csak térben legyen véletlen-
szerű, időben nem. Ekkor az áramkör Û = V̂ t alakú, ahol  
V̂ egy csupán néhány rétegből álló véletlen uniter áram-
kör, ami időben determinisztikusan ismétlődik. Ekkor 
V̂ spektruma hasonlóan jellemzi a dinamikát, mint a szo
kásos esetben a Hamilton-operátoré.

A fenti megközelítés lehetővé teszi az ún. kvantum
káosz kérdésének vizsgálatát. Ez azt mondja ki, hogy 
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+ +
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3. ábra. Az A részrendszer tisztaságánál megjelenő statisztikus modell 
tipikus konfigurációi, (a) amikor az eltelt idő kisebb a részrendszer át
mérőjénél (az összefonódás időben nő), és (b) amikor nagyobb (az 
összefonódás szaturálódik)



Rakovszky Tibor: Véletlen kvantumos áramkörök 287

egy általános (nem integrálható) kvantumos rendszer 
esetén a sajátértékek spektrumának bizonyos tulaj-
donságai megegyeznek a teljesen véletlenszerű (térben 
nem lokális) véletlen mátrixokéval [7].7 Bár ezt a sejtést 
sok numerikus számítás támasztja alá, a véletlen áram-
körök szolgáltatták az egyik legelső olyan konkrét mo-
dellt, amelyben analitikusan is belátható volt a kaotikus 
spektrum megjelenése egy térben lokális kölcsönhatá-
sokkal rendelkező rendszerben [8]. Ezen túlmenően a 
véletlen áramkörök spektruma olyan struktúrát is tar-
talmaz, amely a térbeli lokalitás következményeként 
túlmutat a véletlen mátrixok szokásos elméletén, viszont 
releváns a lokális Hamilton-operátorok megértése szem-
pontjából.

Szimmetriák és megmaradó mennyiségek. Mint arra már 
utaltunk, a véletlen áramkörös modell egyik hiányossága 
az energiamegmaradás elvének sérülése. Az (1) Schrö-
dinger-egyenlet esetében – hála a Hamilton-operátor 
lokalitásának – az energiasűrűségre egy lokális konti
nuitási egyenlet érvényesül. Ez a rendszer dinamikájá-
nak fontos aspektusa, amelyet a fenti áramkörös model-
lek nem ragadnak meg (ez igaz még az imént tárgyalt, 
időben determinisztikus áramkörökre is).

Bár az energiamegmaradást nem tudjuk az áram
körös modellben helyreállítani, az ezzel járó fizikai 
effektusok egy jelentős részét igen, ha az energia helyett 
valamilyen más folytonos megmaradó mennyiséggel 
ruházzuk fel őket. Ha például a részecske állapotának 
q lehetséges értékére úgy gondolunk, mint egy spin z 
komponensének lehetséges állapotaira, módosíthatjuk 
az áramkört alkotó kapukat olyan módon, hogy a rend-
szer teljes „mágnesezettsége” a z irányban megmarad-
jon az időfejlődés során.8 Ekkor a mágnesezettségre 
egy kontinuitási egyenlet érvényesül, transzportját egy 
egzaktul levezethető diffúziós egyenlet adja meg.

A megmaradó mennyiség jelenléte a kvantumos kor-
relációk dinamikáját is befolyásolja. A tisztaság vizsgá-
latához elvégezhető egy, az előző fejezetben tárgyalt-
hoz hasonló leképezés egy statisztikus fizikai modellre, 
amely azonban jóval bonyolultabb; a klasszikus energia 
komplex lesz (így szigorú értelemben véve ez nem te-
kinthető statisztikus fizikai modellnek). Egzakt analiti-
kus megoldás ebben az esetben nem ismert, de belátha-
tó, hogy a tisztaság viselkedése kvalitatívan megváltozik 
a megmaradó mennyiség hatására: diffúzív –log  PA(t) 
~ √t– viselkedést mutat a Haar-féle véletlen áramkörben 
látott ballisztikus –log  PA(t) ~ t helyett [9]. Numerikus 
számítások szerint hasonló szubballisztikus viselkedés 
figyelhető meg hamiltoni rendszerekben is.

Méréssel indukált fázisátmenetek. Az eddigiekben zárt 
rendszerek uniter időfejlődését vizsgáltuk. Módosíthat-

7 �E zzel kapcsolatban lásd Takács Gábor cikkét a Fizikai Szemle 2025. 
áprilisi számában.

8 �E z annak felel meg, hogy a kapukat leíró uniter mátrixok blokkdia-
gonálisak a megfelelő bázisban.

juk modellünket úgy, hogy figyelembe vegye a környe-
zettel való kölcsönhatásból származó nem uniter effek-
tusokat is. Ezeknek két fajtáját különböztethetjük meg. 
Az egyik a kontrollálatlan zaj, amely során az információ 
a rendszerből a környezetbe távozik, és az egész rendszer 
állapota tisztából kevertté változik. A másik, amikor a 
kísérletező maga végez méréseket a rendszeren; ekkor 
az állapot tiszta marad, de a kvantummechanika mérési 
axiómájának értelmében nem uniter módon fejlődik.

Különösen sok figyelmet kapott az elmúlt években 
az utóbbi eset vizsgálata, és az ezzel kapcsolatos „mé-
réssel indukált fázisátmenet” fogalma. Ennek alapja az 
uniter kapuk és az egyes quditeken végrehajtott mérések 
hatásai közötti versengés. Míg az előbbiek a fent vázolt 
módon összefonódást generálnak, addig a mérések a ré-
szecskék közötti összefonódás csökkenéséhez vezetnek 
(pl. ha minden részecskét megmérnénk, akkor egy telje-
sen összefonódás-mentes szorzatállapotot kapnánk). Ez 
a versengés egy fázisátalakuláshoz vezet annak függvé-
nyében, hogy a quditek mekkora hányadát mérjük meg 
időlépésenként [10]. Ha ez a hányados kicsi, a dinamika 
kvalitatívan hasonlít a tisztán uniter esethez, és hosszú 
idő után az A részrendszer összefonódása arányos lesz 
a  méretével: limt → ∞(–log PA(t)) ~ |A|. Ezzel szemben, 
ha  az időlépésenként megmért részecskék száma meg
halad egy kritikus hányadost, akkor bármilyen sokáig 
várunk is, az összefonódás csupán a részrendszer hatá-
rának méretével fog skálázódni: limt → ∞(–log  PA(t)) ~ 
|∂A|. A két tartományt egy másodrendű fázisátalakulás 
választja el, amely a megszokott fázisátalakulásokhoz 
hasonlóan kritikus exponensekkel jellemezhető. Az 
összefonódás mértékének és jellegének ilyen hirtelen 
fázisátmenetei nagy érdeklődést keltettek, és más kon
textusokban is alkalmazásra találtak.

Záró gondolatok
A véletlen kvantumos áramkörök a kvantummechani-
kai időfejlődésnek nagyon sokoldalú modelljei. Velük 
a dinamika lényeges aspektusai (lokalitás, megmaradó 
mennyiségek, mérések stb.) figyelembe vehetők minden 
más részlet elhanyagolása mellett úgy, hogy a véletlen 
mátrixok egy megfelelő osztályára átlagolunk. Ennek 
előnye kettős: egyfelől a véletlen áramkör átlagos visel-
kedésének vizsgálata sokszor egyszerű, egzaktul (vagy 
majdnem egzaktul) megoldható problémákhoz vezet, 
másfelől olyan univerzális tulajdonságok ragadhatók 
meg, amelyek az időfejlődések valamilyen nagy osztá-
lyát egységesen jellemzik. Ezen az úton eljuthatunk a 
kvantuminformáció dinamikájának különféle univerza-
litási osztályaihoz, amelyeket egyszerű hidrodinamikai 
jellegű egyenletekkel írhatunk le, a klasszikus statisz-
tikus fizikából vett fogalmakkal jellemezhetünk, jelen-
tősen megkönnyítve a fizikai intuíció kialakítását. Ezek-
nek az univerzalitási osztályoknak (és az őket elválasztó 
fázisátmeneteknek, pl. a méréseket is tartalmazó model-
lek esetében) feltérképezése továbbra is aktív kutatási 
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terület, amelyben a véletlen áramkörös modellek kulcs
szerepet játszanak. Egyszersmind a véletlen áramkö-
rök összekötő kapocsként szolgálnak a fizika és a kvan-
tum-számítástudomány között, ahol az egyik területen 
felmerülő kérdések egyre többször találnak visszhangra 
(és időnként megoldásra) a másik területen.
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ifjúsági, valamint ÚnKP ösztöndíjat nyert. 
Kutatási területe az alacsony dimenziós 
szupravezető-félvezető hibrideken alapuló 
nanoáramkörök kísérleti vizsgálata.

 
Csonka Szabolcs a Bme fizika tanszék  docense 
és tanszékvezetője, illetve a Szupravezető nano-
elektronika lendület Csoport vezetője. a Báze-
li egyetemen töltött marie Curie-ösztöndíjas 
posztdoktori kutatásai alatt kezdett foglalkozni a 
félvezető-szupravezető heterostuktúrákkal, majd 
hazatérve egy erC Starting Grant segítségével 
kezdte el kiépíteni a minták készítéséhez és méré-
séhez szükséges infrastruktúrát. Később a Kvan-
tuminformatika nemzeti laboratórium keretein 
belül vezette a szupravezetőqubit-kutatásokat. az 
elmúlt évet az aacheni egyetemen töltötte Hum-
boltd-ösztöndíj keretében.

Makk Péter a Bme fizika tanszék docense, 
tanszékvezető-helyettese, a mta-Bme „Kor-
relált van der Waals Heterostruktúrák” Kuta-
tócsoport vezetője. Posztdoktori kutatásait a 
bázeli egyetemen végezte, ami után marie Cu-
rie-ösztöndíjasként tért haza. Sok egyéb pá-
lyázata mellett nemrégiben elnyerte az erC 
Consolidator pályázatát. Kutatási területe 
magában foglalja a szupravezető-elektronika 
mellett a spintronikát és az új fázisok vizsgá-
latát kétdimenziós anyagokban.

az elmúlt években a kvantumszámítógép-architektú-
rák robbanásszerű fejlődésen mentek keresztül, és olyan 
speciális problémákat lehet velük már most megcélozni, 
amik klasszikus számítógépekkel komoly kihívást jelen-
tenek – ahogy ez a Fizikai Szemle jelenlegi számának 
több cikkéből is kiderül. az egyik legperspektiviku-
sabb irány a szupravezető áramkörökre épít, ezekről egy 
össze foglalás  Gyenis andrás cikkében található. ebben a 
cikkben először röviden bemutatjuk a mai legnépszerűbb 
architektúra, a transzmon qubit alapjait és a méréseket, 
amelyeket a Kvantuminformatika nemzeti laboratóri-
um  keretében végeztünk, majd újfajta, szilárdtestfizikai 
alapú, topologikus jelleggel bíró qubitek kutatását ismer-
tetjük.

a qubitek működése a kvantummechanika törvénye-
in alapul, ahol egy kétállapotú rendszer nemcsak az ún. 
bázisállapotokban – az alapállapotban (0) vagy a ger-
jesztett állapotban (1) – lehet, hanem ezek tetszőleges 
szuperpozíciójában. ezt a Bloch-gömbbel lehet szemlél-
tetni, ahol a qubit állapotát a gömb tetszőleges pontjába 
mutató vektor jellemzi – szemben a klasszikus bitet jel-
lemző két állapottal, ami az északi és déli saroknak felel 

meg (1a. ábra). az északi (1) és déli sarkot (0) jelentő két 
állapot, aminek szuperpozíciójaként az összes állapot 
előállítható, nagyon sokféle fizikai megvalósítással bír-
hat. a transzmon qubit szupravezető alagútátmeneteken, 
ún. Josephson-átmeneteken alapszik [1]. a transzmon 
geometriában egy kis méretű szupravezető fém szigetet 
egy vékony, szigetelő réteg választ el egy másik szuprave-
zetőtől. a szigetelőn az elektronok kvantummechanikai 
alagutazással át tudnak jutni. Pontosabban, mivel a veze-
tési jelenségben részt vevő elektronok szupravezetőkben 
Cooper-párokba rendeződnek, ezek a párok alagutaznak 
át a Josephson-átmeneteken. a qubit két bázisállapota 

https://arxiv.org/abs/quant-ph/0505030
https://arxiv.org/abs/2505.11489
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lehet például egy Cooper-pár helyzete is: az információt 
ez esetben az hordozza, hogy a bal, vagy a jobb oldalon 
helyezkedik-e el. Ezt hívják töltésqubitnek. A transz-
mon qubit ennek egy változata, ahol nem egy kiszemelt 
Cooper-pár pozíciójába, hanem sok Cooper-pár kollek-
tív hullámfüggvényébe van az információ kódolva.

A transzmon qubiteket sokszor áramköri helyettesí-
tő képpel írják le (lásd Gyenis András írását). A szupra
vezetők közt alagutazással átjutó elektronok által szállí-
tott áramhoz nem tartozik feszültségesés, az átmenetnek 
nulla az ellenállása. Azonban a Josepshon-átmenetekhez 
lehet egy induktivitást is társítani, ami a két szupravezető 
közt levő kapacitással együtt egy rezgőkört eredményez 
(1b. ábra, zöld rezgőkör). Ez azonban egy veszteségmen-
tes, ugyanakkor nem harmonikus rezgőkör. Ez azért 
fontos, mert kvantummechanikai rendszerként kezelve 
a rezgőkört, diszkrét de nem ekvidisztáns energiaszintek 
jellemzik, amelyek közül a két alsó szintet azonosítjuk a 
qubit két bázisállapotával, az alap- és gerjesztett állapot-
tal. Mivel az alsó két szint energiakülönbsége eltér más 
szomszédos szintek energiakülönbségétől, kellően szűk 
spektrumú mikrohullámú sugárzással ezek közt átmene-
tek gerjeszthetők anélkül, hogy a többi szintre gerjesz-
tenénk a rendszert (hasonlóan az atomi nívók esetéhez).

Az áramkörök kiolvasásához mikrohullámú szup-
ravezető rezonátorokat használnak (1b. ábra, kék rez-
gőkör). Ezek a koaxiális kábelhez hasonló geometriával 
készülnek: egy középső vezetékkel és az azt körülölelő 
földsíkkal, azonban itt sík geometriában (2a. ábra). Ah-
hoz, hogy egy rezonátor jöjjön létre, a középső veze-
tőt általában kapacitással szakítják meg. Ha ezt optikai 
rezonátorokhoz hasonlítjuk, akkor a kapacitások játsszák 

a gyengén áteresztő 
tükrök szerepét, és a kö-
zépső vezetőben alakul-
nak ki a centiméteres 
hullámhosszú állóhullá-
mok. Mivel az áramkör 
szupravezetőből ké-
szül, a belső veszteségei 
nagyon kicsik, és ha a 
kapacitásokat megfe-
lelően tervezik, nagy 
jósági tényezőjű rezo
nátorok jöhetnek létre, 
ahol a mikrohullámú 
fotonok akár 106-szor 
is oda-vissza pattoghat-
nak, mielőtt kiszaba-
dulnak a rezonátorból. 
A nagyon nagy jósági 
tényező eredménye-
képp a rezonátor éles 
rezonanciával bír. Ez 
látható az 1c. ábrán [2]. 
A qubiteket a rezoná-
torhoz közel helyezve, 

a rezonátor elektromos tere kölcsönhatást létesít a qu-
bit és a rezonátor közt, hasonlóan az elektromos térbe 
helyezett atomokhoz. Ennek eredményeképp a rezoná-
tor rezonanciafrekvenciája más és más lesz, ha a qubit 
0 vagy 1-es állapotban van, így a rezonátort vizsgálva a 
qubit állapotát is meg tudjuk határozni.

A qubiteket rádiófrekvenciás terekkel lehet mani-
pulálni: a qubit a bázisállapotok energiakülönbségének 
megfelelő (Larmor- vagy Rabi-) rádiófrekvenciás térrel 
jól meghatározott ideig besugározva a Bloch-gömbön 
tetszőleges állapotba forgatható. Ez a technika jól ismert 
a mágneses rezonanciás mérésekből [3].

A BME Fizika Tanszékének kvantumeletronika-la
borjában is vizsgáltunk transzmon qubiteket, melyeket 
a göteborgi Chalmers Műszaki Egyetemtől egy közös 
projekt keretében kaptunk. Az általunk vizsgált áramkör 
a 2a. ábrán látható. A qubit forgatását jellemző ún. 
Rabi-mérésnél (2b. ábra) azt mérjük, mekkora valószínű-
séggel lesz a qubit az alap- és a gerjesztett állapotban 
különböző hosszúságú besugárzás után. A periodikus jel 
a qubit x tengely körüli forgatását jellemzi, míg a forgatás 
szögét az impulzus hossza adja meg. A forgatás utáni mé-
rés a kvantummechanika szabályainak megfelelően, 0-t 
vagy 1-et fog adni, az 1a. ábrán jelölt állapot esetén |α|2 
és |β|2 valószínűséggel. A mérést sokszor elvégezve kap-
juk meg a 2b. ábrán látható görbét.

A kvantumszámítógépek nagy kihívása, hogy a qubi-
tek a környezethez csatolódnak, ami információvesztés-
hez is vezet. Az információvesztést általában két szám-
mal jellemzik: a T1 relaxációs idővel, ami azt mondja meg, 
milyen időskálán relaxál a qubit az alapállapotba, illetve 
a T2 fázisvesztési idővel, ami az 1a. ábrán a φ polárszög 

1. ábra. A transzmon qubit elve. a) A qubit állapotának szemléltetése a Bloch-gömbön. Ψ a „0” és „1“ bázisállapo-
tok szuperpozíciója, amelyek a Θ és φ szögekkel parametrizálhatók. b) A transzmon qubit helyettesítő kapcsolási 
rajza. A Josephson-átmenetek egy kapacitással és hangolható induktivitással modellezhetők (zöld), amit egy kiol-
vasó rezonátorhoz csatolnak (kék). c) A qubit állapotának meghatározása a rezonátor frekvenciájának vizsgálatá-
val. A transzmisszió rezonancia- (szaggatott) és a fázisgörbéje (folytonos) eltérő az alapállapotban és a gerjesztett 
állapotban. d) 3He/4He keveréses hűtőrendszer belseje (BME Fizika Tanszék). A folyékony hélium keringetése 
révén a fémváz lehűl, amelyhez a minták termalizálódnak
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értékének randomizálását, azaz a síkbeli polarizáció el-
vesztését írja le. Ezek viszonylag könnyen mérhető men�-
nyiségek; például a T1 meghatározásához a qubitet az 1-es 
állapotba gerjesztjük, és megadott idő után kiolvassuk. 
Ezt a mérést elvégeztük a transzmon qubitre (2c. ábra), 
ahol a mért Q amplitúdó az alapállapot betöltési való-
színűségével arányos. A T1 időskála kb. 60 μs-nak adódik 
ebben a mérésben. Hasonló nagyságrendű idő adódik 
transzmonok esetén a T2-re is.

Bár a transzmon információvesztését jellemző T1 és T2 
időskálák 60 μs-os értéke nagyon rövidnek hat, érdemes 
ezt az értéket kontextusában vizsgálni. Egyrészt ma már 
akár másodperces T1 és T2 időskálák is előfordulhatnak 
különböző szilárdtestfizikai architektúrákban [4], míg az 
első qubiteket ns-os időskálák jellemezték. Ez a hatalmas 
fejlődés nagyon sok fejlesztés eredménye, amelyek egy 
része anyagtudományi jellegű volt, ami jobban definiált, 
tökéletesebb minták létrehozására koncentrált, míg egy 
másik része a környezettel való kölcsönhatások megérté-
sét, és azok csökkentését tűzte ki célul. Másrészt a qubit-
beli információ várható élettartamát a rajta elvégzendő 
logikai műveletek hosszához érdemes viszonyítani; ez a 
mai kvantumszámítógépeken kb. 10 ns.

Ma a szupravezető qubitek kutatása két irányban ha-
lad. Az egyik, hogy a meglévő qubiteket – mint például 
a transzmon – optimalizálják, hogy minél többet integ-
rálhassanak egy chipre, azaz egy áramkörbe. Ez azért is 
fontos, mert sok qubit együttes kvantumállapotait hasz-
nálva logikai qubitként, hibajavító algoritmusokkal ke-
zelhető az információvesztés [5].

A másik irány, amiről a cikk második része szól, és a 
mi kutatásainkat is motiválja, hogy olyan újfajta qubitar-
chitektúrákat hozzunk létre, amelyekben az információ 
hosszabb ideig megőrizhető. Ez egyrészt elérhető a fen-
tebb tárgyalt építőkövek (Josephon-átmenet, kapacitás, 
induktivitás) használatával, ha azokból bonyolultabb, 

összetettebb áramköröket, úgynevezett védett (pro
tected) qubiteket készítünk [6]. Másrészt újfajta építő
kövekkel ún. topologikus qubiteket lehet létrehozni, 
amik valamiféle belső védelemmel bírnak az információ-
vesztéssel szemben [7, 8]. Ez a belső védelem a rendszert 
ellenállóvá teszi a fizikai paraméterek inhomogenitásai-
val, akár a működés közbeni lassú változásaival szemben 
is. Ez hasonlít arra, ahogy a geometriában (topológiá-
ban) a különböző geometriai objektumok topologikus 
tulajdonságai robusztusak: mondjuk, a bögre a fánkba 
apróbb deformációk segítségével átvihető, de a bennük 
lévő lyukak száma nem változtatható meg. A topologikus 
qubiteknél ezek a geometriai tulajdonságok általában a 
részecskék hullámfügvényére vonatkoznak, például az 
impulzustérben.

Bár topologikus qubitet még nem sikerült megvaló-
sítani (a sajtóközleményekkel ellentétben még a Micro-
softnak sem, legalábbis erről még nem közöltek tudo-
mányos eredményt), de sok elméleti javaslat létezik erre. 
Ezek a javaslatok általában úgynevezett mesterséges 
atomokból (kvantumpöttyök), spin-pálya kölcsönhatást 
erősítő anyagokból és szupravezetőkből építkeznek [9]. 
A mi kutatásaink ezen rendszerek alapvető tulajdonsá
gainak megértésére koncentrálnak, ahol a kvantum
pöttyöket félvezető InAs struktúrában hozzuk létre.

Kutatásaink a következő menetrend szerint zajlanak. 
Az elméleti modelleket általunk tervezett és megvaló
sított áramkörökön teszteljük. Ehhez platformként vagy 
kvázi-egydimenziósnak tekinthető InAs-nanopálcák-
ból, vagy félvezetők határán kialakított kétdimenziós 
elektrongázokból indulunk ki. Ahhoz, hogy az elekt-
ronokat a félvezető egy szűk térrészébe, azaz egy kvan-
tumpöttybe csapdázzuk, a tranzisztoroknál is használt 
úgynevezett kapuelektródákat veszünk igénybe. Ezekre 
a kapuelektródákra negatív feszültséget kapcsolva egy 
elektrosztatikus potenciálgátat hozhatunk létre az elekt-

2. ábra. Transzmon qubit mérése. a) Transzmont tartalmazó chip képe. A nagyítás az óramutató járásának megfelelően nő: a bal 
felső képen a mintatartó fej, majd a rezonátor, és maga a Josephson-átmenet látható. b) Qubit Rabi-mérése. A mikrohullámú elekt-
romos térrel való besugárzással a „0” és „1” bázisállapotok között folytonos forgatások hajthatók végre, az oszcilláció pedig a relaxá-
ció miatt cseng le. c) A relaxációs idő mérése impulzusokkal. A kiolvasás előtt eltelt idő függvényében a rendszer T1 karakterisztikus 
idővel relaxál (ahol Q a rezonátorrol visszavert jel 90 fokkal fázistolt komponense)
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ronok számára, így két ilyen kaput használva egy kvan-
tumpötty alakítható ki egy nanopálca esetén (ahogy 
kétdimenziós elektrongáznál is). A kis térfogat követ-
keztében – akárcsak valódi atomoknál – az elektronok 
diszkrét nívókat tölthetnek be, így további elektródákat 
használva ezen energiaszinteket hangolni tudjuk. Ahhoz, 
hogy elektromos méréseket tudjunk végezni, a pálcákra 
vezető további elektródákat készítünk, melyek egy része 
a szupravezetés létrehozásáért is felelős.

Az áramköröket a chipgyártásban is használatos elekt-
ronsugár-litográfiás módszerekkel hozzuk létre a HUN-
REN EK MFA tisztaterében. Az áramkört CAD-szoft-
verekkel megtervezzük, majd a szilíciumlapkát (amire 
a minta készül) egy érzékeny lakkréteggel vonjuk be. A 
megtervezett rajzolat mentén elektronnyalábbal világít-
juk meg a mintát, ami után szelektíven el tudjuk távolí-
tani a lakkréteget, és egy következő lépésben ezekre a 
helyekre fémet (Au, Al, ..., amire szükség van) tudunk 
párologtatni. Egy ilyen minta (3. ábra) elkészítése öt-hat 
ilyen lépéssorozatból áll, és egy-két hetet igényel. Ez-
után a BME Fizika Tanszékén, a laborunkban a mintát 
vékony, 100 μm-es vezetékekkel kötjük ki a chiptartó 
áramkörökre, melyek a mérőrendszerhez további vezeté-
kekkel kapcsolódnak.

Ahhoz, hogy az áramkörökben kvantumbites visel-
kedést tudjunk kimérni, azokat ultraalacsony hőmérsék-
letre, pár 10 mK-es tartományra kell hűteni. Ennek egyik 
oka, hogy az általunk használt szupravezetőben, az alumí-
niumban, csak 1 K alatt alakul ki a szupravezető állapot. 
Másrészt a mintát minél jobban szeparálni kell a környe-
zettől – például a magas hőmérsékleten nagyobb intenzi-
tással megjelenő rácsrezgésektől. Végül a qubitek esetén 
arra is figyelni kell, hogy ne jöjjön létre a gerjesztett álla-
potnak egy elhanyagolható arányú betöltése csupán a hő-
mérséklet hatására, illetve, hogy a szupravezető rezonáto-
rokban ne jelenjenek meg termikusan gerjesztett fotonok.

Az általunk használt hűtőrendszer egy ún. keveréses 
hűtő (dilution fridge, 1d. ábra), ahol a hűtés folyékony 3He 
és 4He keverése révén történik. A két keveréses hűtőgé-
pünk és egy He-cseppfolyósító, mely a BME kampuszán, 
külön épületben van, Magyarországon egyedülálló ala-

csony hőmérsékleti infra-
struktúrát alkotnak. A ke-
veréses hűtőket a világon 
három cég gyártja, egye-
dileg készülnek el, és épí-
tésük egy évet igényel. A 
hűtőgép belső térfogatát 
az 1d. ábrán látható ara-
nyozott tárcsa alakú lapok 
osztják részekre, fokoza-
tokra. A lapok a rendszer-
nek a környezettől való 
elszigetelését biztosítják: 
fentről lefele haladva a kü-
lönböző fokozatok egyre 
hidegebbek. Az alacsony 

hőmérséklet eléréséhez fontos, hogy az elektromágneses 
és egyéb zajokat, hőmérsékleti sugárzást, minimálisra 
csökkentsük. Ehhez a a mérőelektronika egy részét is 
(például erősítőket) valamelyik hűtött fokozaton tartjuk, 
a tárcsákhoz rögzítve, hogy az általuk létrehozott elekt-
ronikai zajt is minimalizáljuk.

Két elkészült minta látható a 3. ábrán. A bal alsó elekt-
ronmikroszkópos képen jól kivehetők a fésű fogaihoz 
hasonlóan elhelyezkedő kapuelektródák, melyek a rájuk 
helyezett nanopálcákban hozzák létre a kvantumpöttyöt 
(lásd a bezáró potenciált, illetve a sematikus nívószerke-
zetet a 3a. ábrán). A kék elektróda felelős a szupravezető 
elektronpárok félvezetőbe injektálásáért. Ebben az áram-
körben a szupravezető két oldalán két kvantumpötty is 
létrehozható – ezek energiasajátállapotai hibridizálhat-
nak a szupravezető elektródán keresztül. Szerkezetét te-
kintve egy ilyen struktúra a hidrogénmolekulával analóg; 
a kvantumpöttyök töltik be a hidrogénatomok szerepét, 
míg a csatoló közeget a szupravezető kondenzátum bizto-
sítja a vákuum helyett [10]. Ezt az ún. Andrejev-molekulát 
először nekünk sikerült megmutatnunk [11], és ez lehet 
a topologikus qubitek alapvető építőköve. Egy hasonló 
rendszer látható a 3b. ábrán, ahol a kvantumpöttyöket 
oldalsó kapuelektródákkal lehet hangolni, és hasonlóan 
a transzmon architektúrához, az áramkör egy szuprave-
zető rezonátorhoz csatolódik. Ez az áramkör két újfajta, 
ún. Andrejev-qubit csatolását valósíthatja meg.

Az elmúlt években a kvantumszámítógépek kutatása 
robbanásszerű fejlődésen ment keresztül. Bár a kutatá-
soknak rengeteg mérnöki aspektusa is van, az újfajta qubi-
tek vizsgálata és megértése a szilárdtestfizika és az anyag-
tudomány legizgalmasabb kérdéseihez kapcsolódnak, 
és a következő évtizedben (vagy évtizedekben?) a fizika 
meghatározó területét fogják képezni.
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a kiváló fizikus és világhíres ismeretterjesztő nagy fába 
vágta fejszéjét ezzel a könyvvel. a Bevezetésben felírja 
einstein egyenletét, amely a testek gravitációs mozgását 
a téridő görbületével értelmezi, azt pedig összekapcsolja 
a tér energia-impulzus eloszlásával, azaz az energia-im-
pulzus tenzorral. utána megígéri, hogy a könyv elolvasá-
sa után a középiskolás fizikában tájékozott olvasó érteni 
fogja az egyenletet. azt is elmondja, hogy az értés egy-
általán nem jelenti azt, hogy az egyenletet meg is fogjuk 
tudni oldani; ahhoz nagyon mély ismeretek kellenek, de 
tudni fogjuk, hogy mi mit jelent benne. ezen a ponton 
megjegyzi, hogy mély szakadék tátong az általános is-
meretterjesztő irodalom és a tankönyvek között: az első 
feltételezi, hogy az olvasót nem érdeklik a matematikai 
alapok, az utóbbi meg arra szolgál, hogy az olvasó eljus-
son az egyenletek megoldásáig. ezt próbálja itt áthidalni.

a szimmetriákkal és megmaradási törvényekkel kez-
di, majd a második, Változás fejezetben nekilát felépíteni 
az alapvető matematikai apparátust. vektorok, függvé-
nyek, differenciálás és integrálás, differenciálegyenletek. 
a Dinamika fejezet következik, a mozgást kiváltó erők 
 leírása, newton törvényei és a mechanika energiaalapú 
 leírása mindezt a harmonikus oszcillátorral szemléltet-
ve. Bevezeti a fázisteret és a konfigurációs teret, a legki-
sebb hatás elvét és a lagrange-függvényt. a Tér fejezet 
felépíti a Hamilton-féle mechanikát és kimondja a loka-
litás elvét, miközben bevezeti a parciális deriválást. az 
Idő fejezet a fejlődést tárgyalja a téridő-tükrözési (CPt) 
invarianciával és az entrópiával. itt logikusan a Téridő 
következik: az elektromágnesség maxwell-leírása és a 
relativitás elve az ikerparadoxonnal (amely valójában 

nem ellentmondás). előkerül a horizont és a fénykúp, a 
lorentz-transzformáció és a négyesvektorok. eddig te-
hát lényegében az egyetemi fizika-alapképzés elméleti 
tananyagát sűríti egy fél könyvbe a szerző.

nagy ugrás következik a Geometria fejezettel. első-
ként természetesen az euklideszi síkgeometriát tárgyalja. 
innen megy át a görbültekre, Bolyait is megemlítve, majd 
az einstein által is használt riemann-geometriára. a met-
rika következik, miközben bevezeti a mátrixokat (nem a 
„mátrix” film világát, persze) és a tenzorokat, valamint 
a skaláris, vektor- és tenzormezőket és műveleteiket. itt 
tér vissza a legkisebb hatás elvéhez, amellyel görbült tér-
ben a geodéziai pályák mentén közlekedünk. ezután már 
tényleg a Gravitáció fejezet jön. itt az ekvivalencia elve 
van soron, az elemi úthossz a minkowski-metrikában és 
a táguló világegyetem, majd az energia-impulzus tenzor 
és végül maga az einstein-egyenlet a ricci-tenzorral. az 
utolsó fejezetet teljes egészében a fekete lyukaknak szen-
teli, még a gravitációs hullámokat is tárgyalja.

a szerző tehát beváltja ígéretét: valóban eljut közép-
iskolai alapokról az einstein-egyenletig. Sőt sokkal to-
vább. nekem, a fizikusnak az eleje kissé unalmas volt, de 
közben remek eszmefuttatásokat olvastam. Kérdés azon-
ban, lesz-e egy középiskolás fizikán nevelkedett, egyete-
mi fizikát nem tanult érdeklődőnek elegendő kitartása az 
egészhez. ilyenkor a Hawking-szám jut eszembe, amely 
azt mutatja, hányan olvasnak végig egy könyvet azok 
közül, akik belekezdtek. Stephen Hawking leghíresebb 
könyve, „az idő rövid története” állítólag 6%-ot kapott. 
Carroll műve ezzel együtt is nagyon értékes, bárki szá-
mára olvasásra érdemes.
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A kvantumok világa, előadás-sorozat 2025. szeptemberben 
az MTA XI. Fizikai Tudományok Osztálya szervezésében

2025-ben ünnepli az emberiség a kvantumelmélet szá-
zadik születésnapját (https://quantum2025.org/). Ez az 
egykor ezoterikusnak, a mindennapoktól távolinak tűnő 
tudományág az elmúlt évszázadban átalakította a világ 
arculatát. Nemcsak a természettudományon, ezen belül a 
fizikán belül okozott személeti forradalmat és nyitott meg 
számos gyökeresen új kutatási irányt, hanem a rá épülő 
modern technológia behatolt a mindennapi életbe is – 
elég az informatika széles körű társadalmi hatásaira utalni.

A kétszáz éves Magyar Tudományos Akadémia Fizikai 
Osztálya tehát nem köszöntheti méltóbb módon a ket-
tős évfordulót, mint azzal, hogy a tudomány iránt ér-
deklődőknek a kvantumelmélet alapfogalmai, furcsa és 
a köznapi szemlélet számára nehezen elfogadható gon-

dolatvilága mellett bemutatja a kvantumfizikára épülő új 
tudományágakat is a kvantumkémiától a részecskefizi
káig, valamint a kvantumelmélet eredményeit gyakorlati 
alkalmazásokra váltó modern technológiát a lézerfizikától 
a sugárbiológián át a kvantuminformatikáig.

A jubileumi előadás-sorozat az MTA Nagytermében 
lesz, 2025. szeptember 3. és 29. között. A 12 előadást az 
egyes területek kiváló szakemberei tartják, a tudományos 
hitelesség mellett a közérthetőség szempontjait is figye
lembe véve. A sorozat előadásainak nézői és az előadások-
ról készült videókat megtekintők átfogó képet kaphatnak 
a huszadik század egyik legnagyobb tudományos áttöré-
séről, valamint az immár termőre fordult kvantumelmélet 
21. századi gyümölcseiről és várható eredményeiről is.

A kvantummechanika itt van velünk – Cserti 
József (ELTE), 2025. szeptember 3.

Mi tartja össze a molekulákat? – Kürti Jenő 
(ELTE), 2025. szeptember 3., 18.00

Milyen a világ, ha kvantum? – Takács Gábor 
(BME), 2025. szeptember 8., 17:00

Schrödinger macskája a laborban – Domokos 
Péter (HUN-REN Wigner FK), 2025. szeptem
ber 8., 18:00

Mit keres a kvantumfizika az orvostudományban? 
– Fröhlich Georgina (SE), 2025. szeptember 10., 
17.00

A kvarkoktól a csillagokig – Csanád Máté (ELTE), 
2025. szeptember 10., 18:00

Kvantumfizika a csillagokban: az elemek keletkezése 
– Fülöp Zsolt (HUN-REN ATOMKI) , 2025. szep-
tember 15., 17.00

Kvantumok között – Utazás az elemi részecskék 
különleges világába – Pásztor Gabriella (ELTE), 
2025. szeptember 15., 18.00

Nanoelektronikától a kvantumelektronika felé – 
Csonka Szabolcs (BME), 2025. szeptember 17., 
17:00

A ma és a holnap kvantumszámítógépei – Asbóth 
János (BME) , 2025. szeptember 17., 18.00

Neumann Jánostól a kvantumos összefonódásig 
– Zaránd Gergely (BME), 2025. szeptember 29., 
17.00

Kvantumkorszakok az Univerzum történetében – 
Dávid Gyula (ELTE), 2025. szeptember 29., 18.00

Az előadások részletes programja és a regisztráció:
https://mta.hu/kvantumok-vilaga-2025

Felhívjuk a kísérő tanárok figyelmét a csoportos regisztráció lehetőségére, melynek választásával 
elegendő a kísérő tanár adatait, továbbá az előadásra vele érkező diákok számát megadni.
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Kutatás. Innováció. Hatás. wigner.hun-ren.hu

MEGISMERNI A VILÁGOT 
AZ ELEMI RÉSZECSKÉKTŐL 
A CSILLAGOKIG

• Kísérleti és elméleti részecskefizika
• Asztro-részecskefizika
• Gravitáció és általános relativitáselmélet
• Plazma- és űrfizika
• Magfizika
• Magfizikai jellegű módszereket alkalmazó 

anyagtudomány
• Komputációs tudományok és elméleti idegtudomány 

Részecske- 
és Magfi zikai Intézet

• Kísérleti és elméleti szilárdtestfi zika
• Kvantumoptika és kvantuminformatika
• Lézerspektroszkópia és fotonika, ultragyors folyamatok

kutatása
• Folyadékszerkezet, gázkisülések, elektrolitikus

nanoszerkezetek
• Statisztikus fi zika
• Anyagtudomány és nanotechnológia

Szilárdtestfi zikai 
és Optikai Intézet

„Ha a tudomány majd oly nagyra nő, hogy az emberi elme nem lesz képes azt 
egészében felfogni, s az emberi élet túl rövid lesz, semhogy idejében eljuthassunk 
az első vonalakba, hogy ott a tudomány gyarapításán fáradozzunk, nem képezhetne-e 
több ember kutatócsoportot, s nem végezhetné-e el együttesen azt, amit egyetlen 
személy nem képes elvégezni? ...

... Az együttműködésekben folytatott kutatás lehetőségeit az eddigieknél sokkal 
behatóbban kellene tanulmányozni, mivel mindeddig ezek képezik az egyetlen látható 
reménységet a tudomány megújhodására, amikor az majd már túl nagyra növekedett 
egyetlen személy számára.”

Wigner Jenő (1902-1995), Nobel-díjas fi zikus
A tudomány határai, 1950




