HOGYAN HASZNALJUK MAJD A KVANTUM-

SZAMITOGEPEKET?

Az ezredforduld tdjan mar az is komoly eredménynek
szamitott, ha kutatdk fel tudtak vazolni egy részletes,
kisérletileg megalapozott tervet, amely elméletben el-
vezethet egy daltalanosan alkalmazhaté, dgynevezett
univerzalis kvantumszamitogép megépitéséhez [1]. Ne-
ves kutatok szilardan hittek a technol6gia megvaldsitha-
toésagaban, de jocskan akadtak szkeptikusok, akik agy
vélték, hogy a fuzids erémiivek és a kvantumszamito-
gépek megépitése is folyamatosan a 30 éves tavlatban fog
kirajzolédni a mindenkori jelenhez képest. Alig harom
évtized elteltével azonban 6rommel lathatjuk, hogy ma
mar tobb nagy egyetem és cégis rendelkezik sajat fejlesz-
tésti kvantumszamitégéppel, amelyek - bar kis méretiik
és instabil mlikodésiik miatt még nem alkalmazhatdak
univerzalisan - mar képesek lehetnek tudomanyosan
érdekes eredményeket is elérni. A 2025-6s fizikai No-
bel-dijasok — John Clarke, Michel H. Devoret és John M.
Martinis - Gtt6ré6 munkassaga jelentGs szerepet jatszott
abban, hogy ilyen gyorsan ilyen messzire jutott a kvan-
tumtechnolégia.

Hibajavitas - az aktualis technoldgiai
mérfoldkd

A legnagyobb kihivast jelenleg az jelenti, hogy a klasz-
szikus aramkorok logikai kapuinak megfelelé kvantum-
kapuk zajosak, ezért minden egyes lépésben egy kis
pontatlansag, hiba jon bele a szamitasba. A ma elérhet6
legjobb kvantumkapuk hibaja nagysidgrendileg 10-* ko-
riil mozog, ami azt jelenti, hogy tizezer lépés utan mar
jelentGs eséllyel rossz eredményt kapunk, szazezer 1épés
utan pedig szinte bizonyosan.

Ezzel szemben a klasszikus szamitégépek logikai ka-
puit mikodtetd tranzisztorok hibarataja mintegy husz
nagysagrenddel kisebb [2]. A preciz m{ikodéshez ez a
megbizhatésdg elengedhetetlen, hiszen egy modern
processzor sok millidrd tranzisztorbdl épiil fel és az ora-
jel is masodpercenként akar tobb millidrd szamitasi cik-
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lust tesz lehet6vé. Egy atlagos szamitégép- vagy okos-
telefon-felhaszndld szdmara ez az apr6 hibarata szinte
észrevehetetlen, és csak néhany kritikus rendszer (pl. a
repiilégépek vagy az lireszk6zok iranyitasi rendszerei)
vagy szuperszamitogép esetében érdemes 6vintézkedé-
seket tenni a potencialisan megjelend hibak kikiisz6bo-
lésére.

A kvantumos jelenségek torékenysége miatt nem
varhat6, hogy a kvantumkapuk miikodése belathatd
idén beliil megkozelitse a tranzisztorok megbizhatdsa-
gat. Ennek az éget6 problémanak a megoldasara fejlesz-
tették ki a kutatok a kvantumos hibajavitas és a hibatir6
szamitasok elméletét, amelynek révén tobb, kevésbé
megbizhaté kvantumbit (vagy roviden qubit) és kvan-
tumkapu egyiittes hasznalataval az itt-ott megjelend
hibak kisziirhetdek és kijavithatdak.

A hibatiird szamitdsok soran tobb fizikai, zajos qubit
tarolja el redundins médon a kvantuminformaciét, ame-
lyek egyiittesen ugy viselkednek mint egyetlen sokkal
megbizhat6obb qubit - ezt hivjuk logikai qubitnek. Viszont
ahhoz, hogy a hibajavité mddszerek miikodni tudjanak,
az egyes kapuknak 6nmaguknak is legalabb valameny-
nyire megbizhaténak kell lenniiik. Ha a kvantumkapuk
fizikai hibardtdja jelentésen nagyobb, mint 1072, akkor
elméletileg sem ismert olyan mddszer, amelynek révén
tetsz6legesen csokkenthet6 volna a logikai hibardta.

A tranzisztorok megbizhatésaganak megkozelitésé-
hezjelenlegiismereteink szerint logikai qubitenként t6bb
szaz vagy akar ezer fizikai qubit egyiittes miikodtetésére
is sziikség lehet, méghozza olyan fizikai kvantumkapuk
segitségével, amelyek mindegyikének legalabb olyan jol
kell miikodnie, mint a ma elérhet6 legjobb kvantum-
kapuk. Noha mar léteznek koriilbeliil ezer qubitet tar-
talmazd csipek, ezek ehhez még dsszességében tulsago-
san zajosak. Csak az elmult egy-két évben sikeriilt olyan
csipeket 1étrehozni, amelyek egyszerre elég nagyok és
precizek is voltak ahhoz, hogy az Osszetett hibajavitd
protokollok alkalmazasa ne rontsa, hanem kicsit javitsa a
szamitasok végeredményét.

A méret a lényeg?

Most, hogy ttljutottunk a kvantumos hibajavitas kisérleti
demonstracidjanak els6 lépésein, az elkovetkez6 egy-két
évben az varhato, hogy ezek a hibajavito eljarasok egyre
tobb fizikai qubit alkalmazdsaval egyre precizebb logi-
kai miiveleteket tesznek majd elérhet6vé, és akkor mar
»csak” a fizikai qubitek szamanak novelése sziikséges az
univerzalisan alkalmazhat6é hasznos kvantumszamito-
gépek létrehozasahoz.
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Ahhoz, hogy egy kvantumszamitégépnek esélye le-
gyen a klasszikus gépeinket tulszarnyalni, legalabb 50
qubitre van sziikség, mert a jelenlegi szamitégépekkel
40-50 qubit méretig tobbé-kevésbé szimulalhat6 tet-
sz6leges kvantumszamitégép. Marpedig 50 megbizhato
logikai qubithez tobb tizezer szorosan egyiittmiikodo
stabil fizikai qubitre lesz sziikség. Persze hibajavitas nél-
kiilis lehet olyan kvantumaramkoroket futtatni, amelyek
nem hasznilnak tdl sok kvantumkaput, és ezek érdek-
feszit6 eredményeket is adhatnak, pl. néhany viszony-
lag egyszeri kvantumrendszer szimulacidéja soran [3].
Mindazonaltal a szakmai konszenzus szerint a kvantum-
szamitégépek igazan hasznos alkalmazasaihoz sziikséges
lesz a hibajavitott logikai qubitek és kvantumkapuk hasz-
nalata [4].

Az eddigi fejlédés titemét és az utdbbi évek attoréseit
latva varhato, hogy a kovetkez6 évtizedben megépiilnek
majd az els6 olyan kvantumszamitégépek, amelyek ké-
pesek lesznek bizonyos feladatokban megbizhaté médon
tulszarnyalni a klasszikus szamitogépeket.

A kvantumszamitoégépek valddi ereje

Annak a feltérképezéséhez, hogy mire lesz érdemes
kvantumszamitégépeket hasznalni, el6szor is meg kell
érteni, hogy hogyan viszonyulnak a kvantumos gépek
a jelenlegi klasszikus szdmitégépeinkhez. A konnyebb
Osszehasonlitds érdekében gondoljunk tgy a klasszi-
kus szamitégépekre, mint nagyméretl (elektronikailag
megvaldsitott) logikai dramkorokre, amelyek egy-két
bitre hat6 NEM, ES, illetve VAGY kapubdl 4llnak. Ezek
a logikai dramkorok kozvetlenill lefordithatéak egy
kvantumkapu-halézatra, vagy roviden kvantumdiram-
korre. Arrakell csak figyelni, hogy a kvantummechanika
reverzibilis, ezért bizonyos részszamitiasok eredményét
nem szabad ugy ,eldobni” vagy ,elfelejteni”, mint ahogy
egy klasszikus dramkor esetében, hanem végig meg
kell tartani a szamitisok sorin. Ez azonban nem jelent
lényeges megkotést, azaz a klasszikus szamitoégépekre
lényegében tekinthetiink tgy, mint ,lebutitott” kvan-
tumszamitoégépekre, mivel elméletben a kvantumszami-
togépeknek minden feladat terén legalabb olyan jol kell
teljesiteniiik, mint a klasszikus szamitégépeknek.

A kvantumszamitégépek gyorsabbak?

Csak azokat az egy-két bites logikai miiveleteket tekint-
ve, amelyeket egy klasszikus szamitogép is el tud végez-
ni, jelenleg nagy lemaradast lathatunk. Mig a klasszikus
szamitégépek millidardnyi logikai miiveletet tudnak elvé-
gezni egy masodperc alatt, addig a szupravezet6iram-
kor-alapu kvantumszamitégépek jelenleg néhany millié
kétqubites miiveletet képesek elvégezni, a csapdazott
ionok esetében pedig csak nagysagrendileg ezer miive-
letre szamithatunk maésodpercenként, mig a semleges
atomok teljesitménye az el6z6 kett6 kozé esik. Ha pedig
a hibatlir6é szamitasok logikai szint mtikodését tekint-
juk és logikai qubitenként ezer fizikai qubittel szamolunk

ugy, hogy minden fizikai qubitre atlagosan legalabb 20
kétqubites fizikai kvantumkapu hat, akkor als6 becslés-
ként még egy 10*-szeres redundanciaval kell szamolnunk.
Ha az er6forrasok elemzésében az elemi miiveletek sza-
mat és idejét Osszeszorozzuk, akkor azt kapjuk, hogy
a szupravezeté aramkorok miveletei legalabb 107-szer
koltségesebbek, azaz effektive ,lassabbak”, miga csapda-
zott ionos rendszerek miveletei 10'°-szer koltségesebbek!
Noha ezekben a paraméterekben is tortént némijavulas az
elmult évtizedben, alapjaban véve azzal kell szamolnunk,
hogy belathat6 id6n beliil a kvantumszamitégépek mi-
veletei sokkal lassabbak maradnak.

A kvantumszamitégépek hoskora?

Ha ranéziink a ma elérhet6 kvantumszamitégépekre ak-
kor sok hasonldsagot fedezhetiink fel a klasszikus szami-
togépek mult szazad kozepi hdskoraval. Az 1940-50-es
évek forduldjan a szamitégépek szobanyi méretiiek vol-
tak és miikodésiik tranzisztorok helyett méretes elekt-
roncsoveken alapult. Ha valaki Neumann Janos mellé allt
volna, és azt mondta volna, hogy b6 fél évszazad mulva
egy ennél sokkal jobb gép ott fog lapulni egy atlagos em-
ber farzsebében, minden bizonnyal bolondnak nézték
volna. A mai napig tarté miniatiirizaciot a tranzisztorok
technolégiai forradalma tette lehet6vé az Gtvenes évek
végétdl kezdve.
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1. dbra. Balra: Neumann Jinos a vezetésével tervezett és épitett IAS
szamitogéppel a hattérben (1952) [5]. Jobbra: John M. Martinis a 2025-
0s fizikai Nobel-dijas kvantumszamitogép-vezérl6 elektronikéaval a hat-
térben a svédorszagi Chalmers Egyetemen (2021) [6]

A tranzisztorokbol épitett integralt aramkorok meg-
jelenése egy olyan rendkiviili esemény volt a szdmitas-
technikaban, amely lehet6vé tette a Moore-torvény altal
leirt, hosszu évtizedeken at tartd exponencialis fejlédést.
El6fordulhat, hogy a kvantum-szamitastechnikaban is
bekovetkezik egy ilyen szingularis esemény, amely egé-
szen Uj palyara allitja majd a kvantumszdmitégépek fej-
16dését, de egyeldre ennek nincs kiilondsebb elGjele, és
ilyen egyszeri fejlédési ugrasokat nem is nagyon lehet
megjosolni, f6leg a jov6re vonatkozoélag.

A Moore-torvény csak kvantumosan tarthatd
fenn?

Moore megfigyelése szerint az integralt aramkorokben
talalhaté tranzisztorok szama két évente duplazddik.
Ennek a miniatiirizaciobél fakadé exponencidlis fejl6-
désnek a kora napjainkban kozelit a végéhez, mivel a
mikroelektronikai tranzisztorok mérete egy-két nagy-
sagrendnyire megkozelitette a sziliciumatomok mére-
tét. Ebben és az ennél kisebb mérettartomanyban val6-
ban feler6s6dnek a kvantumos effektusok, de ezek nem

GILYEN ANDRAS: HOGYAN HASZNALJUK MAJD A KVANTUMSZAMITOGEPEKET? 13



kontrollalt médon jelennek meg, ezért a miniatiirizacié
o6nmagaban nem vezet univerzdlis kvantumszamitogé-
pekhez. Raadasul a kvantumszamitégépek kiilonbozé
komponensei is atomokbdl épiilnek fel, ezért a kvan-
tumszamitégépek megjelenése nem ad kozvetleniil le-
hetdséget a miniatiirizacié tovabbi folytatasara, tehat a
Moore-torvény fenntartasarél nincsen sz9.

Akkor miért épitsiink kvantumszamitogépeket?

A kvantumszamitégépek igazi elénye, hogy djfajta mi-
veleteket tesznek lehet6vé, amelyek bizonyos problémak
megoldasara sokkal hatékonyabban hasznalhat6ak. Egy
kicsit hasonl6 a helyzet a 32 bites és a 64 bites processzo-
rarchitektirak kozotti valtashoz, ahol az érajel nem fel-
tétleniil lett gyorsabb, tehat a sz6 szoros értelmében nem
lettek gyorsabbak az 4j generaciés processzorok. Mind-
azonaltal egy 64 bites processzor elemi utasitaskészlete
gazdagabb, pl. képes nagy pontossagu 64 bites szamokat
egy lépésben Gsszeadni, amelyre a 32 bites processzor-
nak tobb 1épésre volt szitksége, igy effektive mégis sokkal
hatékonyabban tud dolgozni ilyen miveltekkel. Termé-
szetesen a klasszikus szamitégépek és a kvantumszami-
togépek kozotti valtds ennél sokkal fundamentalisabb
technoloégiai ugras. Ennek megértéséhez viszont kicsit
bele kell tekinteniink a kvantumos miikodési elvekbe.

A kvantumszamitasok mikodése

Mostantdl az egyszeriiség kedvéért feltételezziik, hogy a
kvantumszamitégép hibaja elhanyagolhaté, tehat logikai
szinten vizsgaljuk csak a m{ikodését.

A kvantumszamitégépek qubitekkel dolgoznak, ame-
lyek hasonléan a klasszikus bitekhez felvehetik a 0 és 1
értékeket. Barmely klasszikus rendszerrel meg tudunk
valositani egy bitet, amelynek van két jellegzetes meg-
kiilonboztethetd allapota, példaul egy felfelé vagy lefelé
allé kapcsold, 5 V-os vagy 0 V-os fesziiltségszint egy
aramkori elemben, vagy akar a fekete-fehér négyzetek
egy QR kédban.

A qubitek tulajdonsagai és egyiittmiikodése

Hasonléképpen, barmely kvantumrendszer meg tud va-
l6sitani egy qubitet, amelynek van két jol megkiilonboz-
tethetd allapota, amelyeket absztraktul |0)-val és |1)-gyel
jeloliink, ahol a |-) Dirac-jeldlés jelzi a kvantummechani-
kai kontextust. Példaul egy foton vizszintes és fiiggéleges
sikban polarizalt allapotat megfeleltethetjiik a [0) és |1)
qubitallapotoknak. Ezek az allapotok egyértelmiien meg-
kiilonboztethetéek egy polarsziird segitségével. Viszont
akarcsak egy fénynyalab esetében, egy foton polarizaci-
ojanak sikja tetsz6leges lehet, példaul allhat 6 szogben.
Egy 0 szogben polarizalt hullaim fiiggbleges tengelyi
amplitudoja sin(f)-szorosa a teljes amplitidonak, mig a
vizszintes tengelyd amplitidoja cos(f)-szorosa, ezért a
0 szogben polarizalt foton a cos(8)|0) + sin(6)|1) qubit-
allapotnak felel meg, amely a |0) és |1) qubitallapotok
szuperpozicidja.
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Ismeretes, hogy egy polarszlir6 a fénynek csak az
adott iranyu komponensét engedi keresztiil, a fény inten-
zitasa pedig az amplitid6 négyzetével ardnyos. Egy fo-
ton, ami egy fényrészecske, mar tovabb nem bonthato,
ezért az valamekkora valdszintiséggel fog csak keresztiil-
jutni, egyébként elnyelddik vagy visszatiikrozédik. Ha
pl. egy fiiggbleges tengelyld polarszlir6t hasznalunk,
amely a vizszintes polarizacioju fényt tokéletes titkkorként
visszaveri, akkor az a fotont csak sin*(6) valoszintséggel
engedi keresztiil és cos*(0) valdszintiséggel visszapattan
rola. Ha a fotont mindkét iranyban egy-egy kameraval
detektaljuk, akkor valéjaban egy kvantummechanikai
mérést hajtunk végre, és a fent leirt valoszintiségekkel
detektaljuk a fényt valamelyik irdnyban. Viszont mivel
a foton egy fényrészecske, a kvantummechanika torvé-
nyeinek megfeleléen minden alkalommal pontosan az
egyik iranyban fogjuk érzékelni a fotont, tovabba az at-
haladé foton mar fiiggéleges polarizacidju lesz, mig a
visszapattan6 minden esetben vizszintes.

Az egyfoton-qubitek viselkedése konnyen megért-
het6, ha (lézer-) fénnyalabokként gondolunk rdjuk. Az
igazan kiilonleges - klasszikus tapasztalatainktol idegen
- dolog akkor torténik, amikor t6bb (fotonikus) qubit
egyiittes allapotat vizsgdjuk. Ha van n qubitiink, akkor
ezek kiilon-kiilon lehetnek akar |0) vagy |1) allapotban.
Péld4ul, ha hirom piarhuzamosan terjedé fotonbdl az
els6 és utolso fliggdlegesen polarizalt, a kozépsd pedig
vizszintesen, akkor jelolhetjiik ezt az allapotot [101)-gyel,
hasonléképpen az Osszes fiiggbleges és vizszintes kom-
binaciét leirhatjuk egy 3-hosszd bitsorozattal |5, b,b;),
ahol b; € {0,1}. A kvantummechanika torvényei szerint
viszont ezek a qubitek tetszélegesen dsszefonddhatnak,

vagyis barmely
Z Ay

bibybse{0,1Y
szuperpozicié6 megengedett, azzal a megkdtéssel, hogy
aAZ Q5,5 amplitidok abszolutértékének négyzetdsz-
szege 1. A vizszintes és fiigg6leges polarizaciés iranyok
mérésekor (hasonldéan az egy qubites esethez) |ay,s,s|*
valészinlséggel detektaljuk a b,b,b; polarizacidkonfigu-

bib,b,)

FIZIKAI SZEMLE 2026/1



raciot, és a mérés utan a fotonok a mért irdnyokban
lesznek polarizaltak. Tehat a mérés, akarcsak a fenti egy-
fotonos esetben, visszafordithatatlanul megvaltoztatja a
qubitek 4llapotat.

Miiveletek qubiteken

A kvantumszamitégépek mikodése logikai szinten rend-
szerint a kovetkez6 séma szerint megy. El6sz6r minden
qubitet bedllitunk egy fix, pl. |0) kezd6allapotba, utina
kiilonb6z6 egy- és kétqubites kvantumkapukkal mddo-
sitjuk a qubitek dllapotat, végiil megmérjiik a qubiteket.
A kvantumfizikai miiveletek linedrisak, ennek meg-
felel6en a kvantumkapuk is azok. Vegyiik példaul a logi-
kai tagadast mint egybites miveletet; NEM: 0 — 1, 1+ 0.
Az ennek megfelel6 X kvantumkapu ugyanigy mitikodik;
X:10) — [1), [1) — |0). A linearitasbdl pedig az kovetkezik,
hogy ez a kvantumkapu szuperponalt allapotokon a ko-
vetkez6képpen miikodik: a|0) + B|1) — a|l) + f]0).
Altalanossagban elmondhaté, hogy elég ismerni egy
kvantumkapu hatdsit a bemeneti qubitek dsszes nul-
la-egy értékekbdl all6 bitsorozatnak megfeleld bdzis-
dllapotdn, a linearitds miatt ez mar egyértelmien meg-
hatarozza a hatast egy tetsz6leges szuperponalt allapotra.
Egy masik természetes kdvetelmény, hogy kvantum-
kapuk csak gy hathatnak, hogy a qubitek kvantum-
allapota egy Gj lehetséges kvantumallapotra valtozzon.
Mivel kikotottiik, hogy a kvantumallapotok amplitidoéi-
nak négyzetosszege 1, ha a kvantumallapotokra tgy gon-
dolunk, mint az amplitid6okbol 4116 vektorra, akkor ez azt
jelenti, hogy a kvantumkapuk altal leirt linedris mivele-
tek megdrzik az euklideszi hosszat. Az ilyen miiveleteket
unitér operdtoroknak hivjak, amelyek a hossz6rzés miatt
mindig invertalhatéak (visszafordithatéak) egy masik
unitér operator altal. Ez az oka annak, hogy a mérést le-
szamitva a kvantumszamitoégép miiveletei reverzibilisek.
Mig klasszikusan az egyetlen nem trivialis egybites
miivelet a logikai tagadas, addig kvantumosan még sok
mds izgalmas egyqubites kapu létezik. Példaul az Hada-
mard-kapu, amely a kovetkez6képpen hat

JRES AR
> (10)-1)

Ezen feliil vannak még pl. 8 szogi forgatasnak megfeleld
egyqubites kapuk, amelyek a kovetkez6képpen hatnak:
|0> — cos(9)|0>—sin(6’)|l>,
|1> — sin(€)|0> +cos(9)|l>.

Egy kvantumszamitégépet univerzdlisnak hivunk, ha
tetsz6leges unitér operator megvaldsithato6 rajta. Ehhez
szitkség van legalabb egy kétqubites miveletre is, mint
amilyen példaul a CNOT (vezérelt negilas), amely a ma-
sodik (qu)bit értékét negalja, ha az els6 (qu)bit értéke 1:
|00) > |00), |01)+>]01),

[10) = [11), [11)>]10).

H (1)

CNOT: {

Kvantumaramkorok

50%

o {AHA- 0 o~ {on]

Egyqubites kvantumaramkor Két véletlen bitmivelet

3. dbra. Kvantuminterferencia és klasszikus véletlenség

A kvantumkapukbdl 4ll6 haldzatot, ami leirja a kvan-
tumszamitdgép miveleteit, kvantumaramkornek hivjak.
Példaul a 3. dbra bal oldalan egy két kvantumkapubdl
all6 kvantumaramkor lathaté. Ez az aramkor azt szemlél-
teti, hogy az Hadamard-kapu 6nmaga inverze, két 1épés
utdn visszaériink a kezdeti |0) allapotba. Az els6 Hada-
mard-kapu utdn az allapot (1/42)(|0) + |1)), amely szu-
perponalt allapot a masodik Hadamard-kapu hatésara
interferencidt eredményez, és igy a kezdeti |0) dllapotba
jutunk. Ez abbdl fakad, hogy az (1) egyenletben 1év6 azo-
nos el6jeld amplitudok konstruktivan erdsitik egymast,
mig az ellentétes eljellek destruktivan kioltjdk egymast.

Ha azonban az els6 Hadamard-kapu utan egy mérést
végziink, akkor fele-fele eséllyel kapunk |0) vagy |1) alla-
potot. Ezutan a masodik Hadamard-kaput is végrehajtva
a két lehetséges végallapot (1/42) (|0 * 1)) lesz, amelye-
ket megmérve ismét fele-fele eséllyel kapnank |0) vagy
|1) eredményt. Tehat ha mindkét Hadamard-kapu utan
kozvetleniil végeznénk egy mérést, akkor egy klasszikus
véletlent haszndlé aramkort kapnank, amely fele-fele
eséllyel vagy megtartja vagy negalja a bit értékét, lasd a
3. dbra jobb oldalat.

Ugyanez a jelenség figyelhet6 meg, ha a két Hada-
mard-kapu kdz6tt nem egy mérést végziink, hanem , atir-
juk” a fels6 qubit allapotat egy masik qubitéba egy CNOT
kapu segitségével. Az aramkor utdn a qubitjeink mérése
itt is egyenletes eloszlast véletlen eredményre vezetne:

0

|0)

|00) + [01) + [10) — |11)
2

D

N
”

00y 2 1002 +110) CNOT J00) +111) H ]00) +110) + lo1) = [11)
2

3 2

A 3. dbra és a fenti aramkor teljesen analdg a hires
kétrés-kisérlethez, ahol a két résen 4athaladd elektron
(vagy akar foton) dnmagaval interferal az erny6n. Ha
azonban megmérjiik, hol haladt keresztiil az elektron, az
interferencia eltlinik. Hasonloképpen itt az interferen-
cia révén kialakuld |0) végallapot annak az eredménye,
hogy az aramkor kozepén a |0) és |1) dllapot szuperpozi-
cidja van jelen. Ezzel szemben ha kozépen egy mérést
végziink, akkor a mérési eredménynek megfelelGen a |0)
vagy |1) allapotba keriil a qubit. A fels6 qubit CNOT-os
»atirasa” egészen hasonlé eredményre vezet, és valdjaban
tekinthetd egyfajta kozbens6é mérésnek is, hiszen az als6
qubit eltarolja, hogy milyen allapotban volt a fels6 qubit
a két Hadamard-kapu kozott, ami a végén egy méréssel
akar ki is olvashatd.
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Itt érdemes megjegyezni, hogyilyen és ehhez hasonlé
kozépiskolas szintli matematikai leirassal szamos izgal-
mas kvantuminformatikai érdekesség megérthetd, lasd
a Fizikai Szemle jelenlegi szamaban [7], illetve a vilag
els6, ebben a témaban irt kdzépiskolas szakkori jegyze-
tét, amely mar magyar forditasban is elérhetd [8].

Parhuzamos szamitasok szinte ingyen?

A kvantumszamitégépek lehetéséget adnak egy ujfajta
kvantumos pdrhuzamossdgra a szamitasok soran. Ez ab-
bol fakad, hogy ha n qubitet vesziink a |0) allapotban, és
mindegyikre alkalmazzuk az Hadamard-kaput, akkor
az n qubites uniform szuperpoziciot kapjuk, amelyben az
osszes |b, b, ... b,) bazisillapot amplitadéja 1/42". Tegyiik
fel, hogy van egy bonyolult f: {0,1}"— {0,1}* binaris fiigg-
vényiink, amely egy logikai aramkoérrel adott! Ha az n
qubites uniform szuperpozicion feliil vesziink k& darab
csupa |0) allapotu qubitet, és az egyiittes allapotra al-
kalmazzuk a logikai aramkornek megfelelé U;kvantum-
aramkort, akkor a kovetkez6 kvantumallapotot kapjuk:

0",0’C>Ii>" > —s,0k>£> > ——

se{0,1)"
(Az n parhuzamosan hat6 H kaput H®"-nel jeloljiik.)

Ahogy a (2) egyenletbdl is latszik, a kvantumdram-
kor egyszeri hasznalataval egy olyan kvantumallapotot
allithatunk el6, amely valamilyen értelemben tartalmaz
informaciét a fiiggvény Osszes lehetséges kiértékelésérdl.
Viszont nem tudjuk kiolvasni mind a 2" futis eredmé-
nyét, hiszen ha megmérjiik a kvantumallapotot, akkor
csak egy egyenletes eloszlasu véletlen n-hosszu bitsoro-
zatot fogunk kapni a hozza tartozd fliggvényértékkel.
Egy hatékony kvantumalgoritmus ezért ilyenkor még
tovabbi lépéseket tesz, hogy az interferencia révén mégis
ki tudjon valami olyan hasznos informaciét nyerni a sok
figgvényértékbdl, amelyet klasszikusan koltséges volna
kiszamitani.

) @)

Hatékony kvantumalgoritmusok

Egy kvantumalgoritmus akkor tud a klasszikus szamit6-
gépeknél hatékonyabban miikddni, ha jol kiakndzza a
probléma strukturajat és komplex interferenciak révén
jut el gyorsan a megoldasra.

Faktorizacio és perioduskeresés

Taldn a leghiresebb példa Shor kvantumalgoritmusa
egész szamok faktorizdlasara, azaz primtényez6kre bon-
tasara. Az egyik leghiresebb titkositasi eljaras, az RSA
(Rivest-Shamir-Adleman) azon a feltevésen alapszik
hogy ha vesziink két tobb szaz jegyl véletlen primsza-
mot, p-t és g-t, akkor a p- g szorzatbdl gyakorlatilag le-
hetetlen kiszamitani a p és g primeket, ezért azokat hasz-
nalhatjuk egyfajta privat kulcsként.

Shor algoritmusanak egy egyszer véltozataval azon-
ban koénnyen kiszamithat6 a két primtényezd. Ehhez
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vegylink egyenletes eloszlassal egy véletlen a € {2,3, ...,
m— 1} szamot, és vizsgaljuk azt az f: N - {0,1,2, ..., m-1}
fiiggvényt, amelyet f(j) = a/ (mod m) alapjan definialunk.
Az f fliggvény klasszikusan hatékonyan kiszamithaté az
ismételt négyzetre emelés modszerével. Tovabba ez a
tiiggvény periodikus f(j) = f(j + h), és jo eséllyel a pe-
riddushossz maximalis lesz: h = (p - 1)(g - 1). Ha h =
(p - D(g - 1) ismert, akkor m = p- g-val egyiitt kapunk
két fiiggetlen egyenletet a p és g ismeretlenekre, és ké-
szen vagyunk.

Elegend6 tehat, ha a periédushossz kiszamitasara
talalunk egy kvantumalgoritmust. Tekintsiik most a (2)
egyenletben 1év6 n-hosszu bitsorozatokat Ugy, mint bi-
ndrisan leirt egész szamokat 0 és 2" - 1 kozott, azaz

2 =l f©) = ))-

se{0,1}"

Ha az utolsé k qubitet megmérve a mérési eredmény f(r),
akkor az els6 n qubit az ezzel konzisztens (qu)bitsoro-
zatok szuperpozicidjara redukaloédik. Mivel f(5) értéke
csak j-nek h-val vett r € {0,1, ..., m-1} osztasi maradé-
katol fligg, a mérés utdn kapott allapot felirhaté ugy,
mint

Z\/7|r+i-h,f(r)>,

ahol /, =|2~"|. Erezhetd, hogy ez a kvantumallapot ele-
gend6 informaciot kell hordozzon a i periédushosszrol.
Viszont ha az allapotot csak egyszerlien megmérnénk,
akkor minddssze egy véletlen g szamot kapnank, amely-
re f(g) = f(r) teljesiil. Ehhez pedig elég lett volna csak egy
véletlen g szamot venni és aztan kiszamitani f(g) értékét.

Az otlet az, hogy be kell vetni a jelfeldolgozasban
széles korben haszndlt Fourier-transzformaciot, még-
pedig annak diszkrét verzidjat, amely torténetesen egy
2"-dimenziés unitér operator. Ezen n qubites kvan-
tum-Fourier-transzformacié (QFT) rdadasul kozelit6-
leg nlog(n) egy- és kétqubites kvantumkapuval imple-
mentalhat6. Ha ekkora dimenziés vektorokat akarnank
Fourier-transzformalni egy klasszikus szamitégépen, az
exponencialisan sok szamitasi lépést igényelne!

Ha olyan szerencsénk van, hogy % osztja 2"-et (4. db-
ra), akkor ez a Fourier-transzformacié a h peridédusd
szuperpoziciobol egy 2"/h periddust szuperpoziciét hoz
létre, méghozza r eltolas nélkiil! Ha ezutan mériink, ak-
kor mar egy c-(2"/h) alakd szamot kapunk egy egyenle-

|amplitddd| = V1/h
|amp11tudo = vh/ 2 QFT
roor+h r+2h .- 0 i—” Z-i—"

4. dbra. A kvantum-Fourier-transzformécié utdn az amplitidok abszolit
értéke és a periédushossz invertal6dik, viszont a kezdeti  eltolas eltiinik!
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tes eloszlasu véletlen ¢ € {0,1, ..., k- 1} szamra. A kapott
szamot elosztva 2"-nel megkapjuk a ¢/h tortet, amelynek
a nevezdje egyszerisités utan # lesz, feltéve hogy c és h
relativ primek (amire j6 esély van). Ha # nem osztja 2"-et,
de n kell6en nagy (pl. 2" > h?), akkor egy hasonlé, lanc-
torteken alapul6 eljarassal megallapithato & értéke.

A kvantumszamitas azért tud ilyen hatékony lenni
itt, mert van egy nagyon erds algebrai struktira, amely
lehetGséget ad erds interferencia létrehozasara. Tobb
mas hasonl6 absztrakt probléma tekintetében is hatal-
mas kvantumos gyorsulast tesz lehet6vé az algebrai
struktura, viszont ilyen problémak leginkabb csak tit-
kositasi eljarasok feltorése kapcsan meriilnek fel a gya-
korlatban.

Keresés anélkiil, hogy minden elemre
rakérdeznénk

Természetes kérdés, hogy lehet-e az erds struktira hia-
nyaban is érdemben gyorsitani kvantumosan, amelyre
Grover algoritmusa ad pozitiv valaszt. Ha van egy S hal-
mazon értelmezett f fliggvényilink, amelyr6l mindossze
annyit tudunk, hogy egy adott y értéket csak egyszer
vesz fel, akkor klasszikusan varhatéan majdnem az 9sz-
szes f(s) értéket ki kell szamitanunk, hogy megtalaljuk
azt az x € S-beli elemet, amelyre f(x) = y. Kvantumosan
azonban elég csak nagyjabél [S[ alkalommal hasznalni
az f-et kiszamitd (kvantum-) aramkort.

Ez egy sokkal szélesebb korben hasznalhaté kvan-
tumos gyorsitas, mint pl. Shor faktorizal6 algoritmusa,
viszont az elérhet6 gyorsitas exponencidlis helyett csu-
pan kvadratikus. Gyakorlati alkalmazasokban azonban
nehéz ezt a csekély elényt apropénzre valtani, mivel a
kvantumszamitégépek jelenleg sok nagysagrenddel las-
sabbak és koltségesebbek, mint klasszikus versenytarsa-
ik. Az altalanos nézet szerint ezért a belathat6, egy-két
évtizedes tavlaton beliil olyan alkalmazasokat kell keres-
niink, ahol a kvadratikusnal nagyobb kvantumos elény
érhet6 el.

Kvantumos bolyongasok

A véletlen bolyongasok kvantumos megfelelSit régota
vizsgaljak, mivel ezek sok esetben kvadratikusan gyor-
sabban terjednek, ezaltal hatékonyabb keresést tesznek
lehet6vé Grover algoritmuséaval rokon médon. Azonban
ritka esetben ennél joval nagyobb, exponencialis gyor-
sulasra is lehet6séget adnak ezek a bolyongasok, példaul
leveleik mentén kétszeresen, véletlenszeriien Osszeko-

BEJARAT KIJARAT

S. dbra. Két bindris fa, leveleik mentén Gsszekotve

tott n-mélységl binaris fak esetében, mint az 5. dbrdn
lathato.

Ennek a grafnak az a specidlis tulajdonsaga, hogy a
be- és kijaratot leszamitva minden cstcshoz hirom él
tartozik. Ezért, ha nincs ilyen szépen térben elrendez-
ve a graf, akkor a bejaratbdl indulva a grafot lokédlisan
felderitve nagyon nehéz megtalalni a kijaratot, mert a
levelek véletlenszer( 6sszekottetésein atjutva nem lehet
tudni melyik él visz a be-, és melyik a kijarat felé. Viszont
a kvantumbolyongés nem igényli az irdnyok ismeretét:
az interferencia miatt a graf ugy viselkedik, mintha egy
egyszeri vonal lenne, igy a kijarat gyorsan megtalalhato.

Viszont ez a struktira nem nagyon jelenik meg ter-
mészetes problémdkban. Ami talain még nagyobb gond,
hogy hiaba talalja meg a kijaratot a kvantumos bolyon-
gas, Ggy tlnik, nem tud megtaldlni egy utat a be- és ki-
jarat kozott. Ha ugyanis az utat elkezdi megjegyezni a
bolyongas, az interferencia a kétrés-kisérlethez hason-
l6an megsziinik.

Sok masik kvantumalgoritmus is hasonl6 nehézségek-
kel kiizd: erds strukturdlis feltételekhez kotott, és csak
nagyon limitalt informaciét tud hatékonyan kinyerni.

Szamitasok magas dimenzi6s vektorokkal

A kvantumszamitégépek miveletei exponencidlisan
nagy dimenzids vektorokkal és azokon vett unitér ope-
ratorokkal irhatdak le. Ezekbe az unitér operatorokba
pedig bedgyazhatéak mas magas dimenzids linearis ope-
ratorok is, amelyek szamos tudomanyos szdamitds soran
hasznosak lehetnek, pl. sokvaltozos linedris egyenlet-
rendszerek vagy differencialegyenletek numerikus meg-
olddsaban. Noha a magas dimenzidés vektorokat hlien
reprezentdljak a kvantumszamitégép belsé allapotai,
ezeket csak nehezen, sok-sok mérés és ismételt probal-
kozas révén lehet egy klasszikusan kezelhet6é vektorra
leforditani.

Ahhoz, hogy ki tudjuk akndzni ezt az exponencialis
allapotteret, olyan problémakat kell keresni, ahol a ki-
vant végeredmény megkaphat6 a vizsgalt vektorok né-
hény egyszert, alacsony dimenzids vetiiletével. A kvan-
tumszimulacidt leszamitva, ahol tipikusan csak néhany
fizikai mennyiség érdekes, nagyon nehéz ilyen problé-
makat talalni. Ez annyiban talan nem meglepd, hogy
Richard Feynman éppen a kvantumos szimulaciok le-
het6vé tétele céljabol javasolta a kvantumszamitdégépek
kifejlesztését.

Hogyan tovabb?

A kvantumos szimulacié mar egy évtizeden belill is ke-
csegtet olyan eredményekkel, amelyek klasszikus sza-
mitégépekkel elérhetetlennek tlinnek, és anyagtudoma-
nyi, majd kvantumkémiai attérésekre is elvezethetnek.
Bizonyos heurisztikus optimalizalasi algoritmusok is
igéretesnek tlinnek, de ezen kiviil nem latszik mas jol
korvonalazott, 16tavolban 1évé gyakorlati alkalmazas.
Ez a Google kvantumalgoritmusokra specializalt ku-
tatécsoportjat is aggasztja [9], ezért figyelemfelhivasul
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az XPRIZE Alapitvanyon keresztiil 1étrehoztak egy 5
milli6 dollar Osszdijazasi versenyfelhivast, amelynek
keretében a palyazéknak a kvantumszamitégépek mi-
nél hamarabb elérhet6 alkalmazésait kell kidolgozniuk.
2025 decemberében e cikk szerz6jének csapata (,,Gibbs
Samplers”) is bekeriilt a verseny hét dontds csapata kozé,
szintén egy kvantumszimulacids eljaras tovabbfejlesz-
tésével, amely akdr optimalizacids feladatokra is alkal-
mazhato lehet [10].

Osszegzésként elmondhat6, hogy tobb specifikus
szamitasi problémaban elengedhetetlen lesz a kvantum-
szamitogépek hasznalata. Bar a megbizhaté kvantum-
szamitogépek megépitése egy oOridsi technologiai attorés
lesz, mégsem varhatd, hogy akkora hatdssal legyen a
hétkdznapi életre, mint a klasszikus szamitégépek for-
radalma tette. Ugyanakkor bizakodasra ad okot, hogy a
klasszikus szamitégépek ekkora térnyerését sem lehetett
el6re josolni azok hskoraban, és valésziniileg sok fontos
alkalmazas a kvantumszamitégépek megjelenésével kar-
oltve alakul majd ki.
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