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Az ezredforduló táján már az is komoly eredménynek 
számított, ha kutatók fel tudtak vázolni egy részletes, 
kísérletileg megalapozott tervet, amely elméletben el­
vezethet egy általánosan alkalmazható, úgynevezett 
univerzális kvantumszámítógép megépítéséhez [1]. Ne­
ves kutatók szilárdan hittek a technológia megvalósítha­
tóságában, de jócskán akadtak szkeptikusok, akik úgy 
vélték, hogy a fúziós erőművek és a kvantumszámító­
gépek megépítése is folyamatosan a 30 éves távlatban fog 
kirajzolódni a mindenkori jelenhez képest. Alig három 
évtized elteltével azonban örömmel láthatjuk, hogy ma 
már több nagy egyetem és cég is rendelkezik saját fejlesz­
tésű kvantumszámítógéppel, amelyek – bár kis méretük 
és instabil működésük miatt még nem alkalmazhatóak 
univerzálisan – már képesek lehetnek tudományosan 
érdekes eredményeket is elérni. A 2025-ös fizikai No­
bel-díjasok – John Clarke, Michel H. Devoret és John M. 
Martinis – úttörő munkássága jelentős szerepet játszott 
abban, hogy ilyen gyorsan ilyen messzire jutott a kvan­
tumtechnológia.

Hibajavítás – az aktuális technológiai 
mérföldkő
A legnagyobb kihívást jelenleg az jelenti, hogy a klas�­
szikus áramkörök logikai kapuinak megfelelő kvantum­
kapuk zajosak, ezért minden egyes lépésben egy kis 
pontatlanság, hiba jön bele a számításba. A ma elérhető 
legjobb kvantumkapuk hibája nagyságrendileg 10–4 kö­
rül mozog, ami azt jelenti, hogy tízezer lépés után már 
jelentős eséllyel rossz eredményt kapunk, százezer lépés 
után pedig szinte bizonyosan.

Ezzel szemben a klasszikus számítógépek logikai ka­
puit működtető tranzisztorok hibarátája mintegy húsz 
nagyságrenddel kisebb [2]. A precíz működéshez ez a 
megbízhatóság elengedhetetlen, hiszen egy modern 
processzor sok milliárd tranzisztorból épül fel és az óra­
jel is másodpercenként akár több milliárd számítási cik­

lust tesz lehetővé. Egy átlagos számítógép- vagy okos­
telefon-felhasználó számára ez az apró hibaráta szinte 
észrevehetetlen, és csak néhány kritikus rendszer (pl. a 
repülőgépek vagy az űreszközök irányítási rendszerei) 
vagy szuperszámítógép esetében érdemes óvintézkedé­
seket tenni a potenciálisan megjelenő hibák kiküszöbö­
lésére.

A kvantumos jelenségek törékenysége miatt nem 
várható, hogy a kvantumkapuk működése belátható 
időn belül megközelítse a tranzisztorok megbízhatósá­
gát. Ennek az égető problémának a megoldására fejlesz­
tették ki a kutatók a kvantumos hibajavítás és a hibatűrő 
számítások elméletét, amelynek révén több, kevésbé 
megbízható kvantumbit (vagy röviden qubit) és kvan­
tumkapu együttes használatával az itt-ott megjelenő 
hibák kiszűrhetőek és kijavíthatóak.

A hibatűrő számítások során több fizikai, zajos qubit 
tárolja el redundáns módon a kvantuminformációt, ame­
lyek együttesen úgy viselkednek mint egyetlen sokkal 
megbízhatóbb qubit – ezt hívjuk logikai qubitnek. Viszont 
ahhoz, hogy a hibajavító módszerek működni tudjanak, 
az egyes kapuknak önmaguknak is legalább valamen�­
nyire megbízhatónak kell lenniük. Ha a kvantumkapuk 
fizikai hibarátája jelentősen nagyobb, mint 10–2, akkor 
elméletileg sem ismert olyan módszer, amelynek révén 
tetszőlegesen csökkenthető volna a logikai hibaráta.

A tranzisztorok megbízhatóságának megközelítésé­
hez jelenlegi ismereteink szerint logikai qubitenként több 
száz vagy akár ezer fizikai qubit együttes működtetésére 
is szükség lehet, méghozzá olyan fizikai kvantumkapuk 
segítségével, amelyek mindegyikének legalább olyan jól 
kell működnie, mint a ma elérhető legjobb kvantum­
kapuk. Noha már léteznek körülbelül ezer qubitet tar­
talmazó csipek, ezek ehhez még összességében túlságo­
san zajosak. Csak az elmúlt egy-két évben sikerült olyan 
csipeket létrehozni, amelyek egyszerre elég nagyok és 
precízek is voltak ahhoz, hogy az összetett hibajavító 
protokollok alkalmazása ne rontsa, hanem kicsit javítsa a 
számítások végeredményét.

A méret a lényeg?
Most, hogy túljutottunk a kvantumos hibajavítás kísérleti 
demonstrációjának első lépésein, az elkövetkező egy-két 
évben az várható, hogy ezek a hibajavító eljárások egyre 
több fizikai qubit alkalmazásával egyre precízebb logi­
kai műveleteket tesznek majd elérhetővé, és akkor már 
„csak” a fizikai qubitek számának növelése szükséges az 
univerzálisan alkalmazható hasznos kvantumszámító­
gépek létrehozásához.
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Ahhoz, hogy egy kvantumszámítógépnek esélye le­
gyen a klasszikus gépeinket túlszárnyalni, legalább 50 
qubitre van szükség, mert a jelenlegi számítógépekkel 
40–50 qubit méretig többé-kevésbé szimulálható tet­
szőleges kvantumszámítógép. Márpedig 50 megbízható 
logikai qubithez több tízezer szorosan együttműködő 
stabil fizikai qubitre lesz szükség. Persze hibajavítás nél­
kül is lehet olyan kvantumáramköröket futtatni, amelyek 
nem használnak túl sok kvantumkaput, és ezek érdek­
feszítő eredményeket is adhatnak, pl. néhány viszony­
lag egyszerű kvantumrendszer szimulációja során [3]. 
Mindazonáltal a szakmai konszenzus szerint a kvantum­
számítógépek igazán hasznos alkalmazásaihoz szükséges 
lesz a hibajavított logikai qubitek és kvantumkapuk hasz­
nálata [4].

Az eddigi fejlődés ütemét és az utóbbi évek áttöréseit 
látva várható, hogy a következő évtizedben megépülnek 
majd az első olyan kvantumszámítógépek, amelyek ké­
pesek lesznek bizonyos feladatokban megbízható módon 
túlszárnyalni a klasszikus számítógépeket.

A kvantumszámítógépek valódi ereje
Annak a feltérképezéséhez, hogy mire lesz érdemes 
kvantumszámítógépeket használni, először is meg kell 
érteni, hogy hogyan viszonyulnak a kvantumos gépek 
a jelenlegi klasszikus számítógépeinkhez. A könnyebb 
összehasonlítás érdekében gondoljunk úgy a klasszi­
kus számítógépekre, mint nagyméretű (elektronikailag 
megvalósított) logikai áramkörökre, amelyek egy-két 
bitre ható NEM, ÉS, illetve VAGY kapuból állnak. Ezek 
a logikai áramkörök közvetlenül lefordíthatóak egy 
kvantumkapu-hálózatra, vagy röviden kvantumáram­
körre. Arra kell csak figyelni, hogy a kvantummechanika 
reverzibilis, ezért bizonyos részszámítások eredményét 
nem szabad úgy „eldobni” vagy „elfelejteni”, mint ahogy 
egy klasszikus áramkör esetében, hanem végig meg 
kell tartani a számítások során. Ez azonban nem jelent 
lényeges megkötést, azaz a klasszikus számítógépekre 
lényegében tekinthetünk úgy, mint „lebutított” kvan­
tumszámítógépekre, mivel elméletben a kvantumszámí­
tógépeknek minden feladat terén legalább olyan jól kell 
teljesíteniük, mint a klasszikus számítógépeknek.

A kvantumszámítógépek gyorsabbak?
Csak azokat az egy-két bites logikai műveleteket tekint­
ve, amelyeket egy klasszikus számítógép is el tud végez­
ni, jelenleg nagy lemaradást láthatunk. Míg a klasszikus 
számítógépek milliárdnyi logikai műveletet tudnak elvé­
gezni egy másodperc alatt, addig a szupravezetőáram­
kör-alapú kvantumszámítógépek jelenleg néhány millió 
kétqubites műveletet képesek elvégezni, a csapdázott 
ionok esetében pedig csak nagyságrendileg ezer műve­
letre számíthatunk másodpercenként, míg a semleges 
atomok teljesítménye az előző kettő közé esik. Ha pedig 
a hibatűrő számítások logikai szintű működését tekint­
jük és logikai qubitenként ezer fizikai qubittel számolunk 

úgy, hogy minden fizikai qubitre átlagosan legalább 20 
kétqubites fizikai kvantumkapu hat, akkor alsó becslés­
ként még egy 104-szeres redundanciával kell számolnunk. 
Ha az erőforrások elemzésében az elemi műveletek szá­
mát és idejét összeszorozzuk, akkor azt kapjuk, hogy 
a  szupravezető áramkörök műveletei legalább 107-szer 
költségesebbek, azaz effektíve „lassabbak”, míg a csapdá­
zott ionos rendszerek műveletei 1010-szer költségesebbek! 
Noha ezekben a paraméterekben is történt némi javulás az 
elmúlt évtizedben, alapjában véve azzal kell számolnunk, 
hogy belátható időn belül a kvantumszámítógépek mű­
veletei sokkal lassabbak maradnak.

A kvantumszámítógépek hőskora?
Ha ránézünk a ma elérhető kvantumszámítógépekre ak­
kor sok hasonlóságot fedezhetünk fel a klasszikus számí­
tógépek múlt század közepi hőskorával. Az 1940–50-es 
évek fordulóján a számítógépek szobányi méretűek vol­
tak és működésük tranzisztorok helyett méretes elekt­
roncsöveken alapult. Ha valaki Neumann János mellé állt 
volna, és azt mondta volna, hogy bő fél évszázad múlva 
egy ennél sokkal jobb gép ott fog lapulni egy átlagos em­
ber farzsebében, minden bizonnyal bolondnak nézték 
volna. A mai napig tartó miniatürizációt a tranzisztorok 
technológiai forradalma tette lehetővé az ötvenes évek 
végétől kezdve.

A tranzisztorokból épített integrált áramkörök meg­
jelenése egy olyan rendkívüli esemény volt a számítás­
technikában, amely lehetővé tette a Moore-törvény által 
leírt, hosszú évtizedeken át tartó exponenciális fejlődést. 
Előfordulhat, hogy a kvantum-számítástechnikában is 
bekövetkezik egy ilyen szinguláris esemény, amely egé­
szen új pályára állítja majd a kvantumszámítógépek fej­
lődését, de egyelőre ennek nincs különösebb előjele, és 
ilyen egyszeri fejlődési ugrásokat nem is nagyon lehet 
megjósolni, főleg a jövőre vonatkozólag.

A Moore-törvény csak kvantumosan tartható 
fenn?
Moore megfigyelése szerint az integrált áramkörökben 
található tranzisztorok száma két évente duplázódik. 
Ennek a miniatürizációból fakadó exponenciális fejlő­
désnek a kora napjainkban közelít a végéhez, mivel a 
mikroelektronikai tranzisztorok mérete egy-két nagy­
ságrendnyire megközelítette a szilíciumatomok mére­
tét. Ebben és az ennél kisebb mérettartományban való­
ban felerősödnek a kvantumos effektusok, de ezek nem 

1. ábra. Balra: Neumann János a vezetésével tervezett és épített IAS 
számítógéppel a háttérben (1952) [5]. Jobbra: John M. Martinis a 2025-
ös fizikai Nobel-díjas kvantumszámítógép-vezérlő elektronikával a hát­
térben a svédországi Chalmers Egyetemen (2021) [6]
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kontrollált módon jelennek meg, ezért a miniatürizáció 
önmagában nem vezet univerzális kvantumszámítógé­
pekhez. Ráadásul a kvantumszámítógépek különböző 
komponensei is atomokból épülnek fel, ezért a kvan­
tumszámítógépek megjelenése nem ad közvetlenül le­
hetőséget a miniatürizáció további folytatására, tehát a 
Moore-törvény fenntartásáról nincsen szó.

Akkor miért építsünk kvantumszámítógépeket?
A kvantumszámítógépek igazi előnye, hogy újfajta mű­
veleteket tesznek lehetővé, amelyek bizonyos problémák 
megoldására sokkal hatékonyabban használhatóak. Egy 
kicsit hasonló a helyzet a 32 bites és a 64 bites processzo­
rarchitektúrák közötti váltáshoz, ahol az órajel nem fel­
tétlenül lett gyorsabb, tehát a szó szoros értelmében nem 
lettek gyorsabbak az új generációs processzorok. Mind­
azonáltal egy 64 bites processzor elemi utasításkészlete 
gazdagabb, pl. képes nagy pontosságú 64 bites számokat 
egy lépésben összeadni, amelyre a 32 bites processzor­
nak több lépésre volt szüksége, így effektíve mégis sokkal 
hatékonyabban tud dolgozni ilyen műveltekkel. Termé­
szetesen a klasszikus számítógépek és a kvantumszámí­
tógépek közötti váltás ennél sokkal fundamentálisabb 
technológiai ugrás. Ennek megértéséhez viszont kicsit 
bele kell tekintenünk a kvantumos működési elvekbe.

A kvantumszámítások működése
Mostantól az egyszerűség kedvéért feltételezzük, hogy a 
kvantumszámítógép hibája elhanyagolható, tehát logikai 
szinten vizsgáljuk csak a működését.

A kvantumszámítógépek qubitekkel dolgoznak, ame­
lyek hasonlóan a klasszikus bitekhez felvehetik a 0 és 1 
értékeket. Bármely klasszikus rendszerrel meg tudunk 
valósítani egy bitet, amelynek van két jellegzetes meg­
különböztethető állapota, például egy felfelé vagy lefelé 
álló kapcsoló, 5 V-os vagy 0 V-os feszültségszint egy 
áramköri elemben, vagy akár a fekete-fehér négyzetek 
egy QR kódban.

A qubitek tulajdonságai és együttműködése
Hasonlóképpen, bármely kvantumrendszer meg tud va­
lósítani egy qubitet, amelynek van két jól megkülönböz­
tethető állapota, amelyeket absztraktul |0〉-val és |1〉-gyel 
jelölünk, ahol a | · 〉 Dirac-jelölés jelzi a kvantummechani­
kai kontextust. Például egy foton vízszintes és függőleges 
síkban polarizált állapotát megfeleltethetjük a |0〉 és |1〉 
qubitállapotoknak. Ezek az állapotok egyértelműen meg­
különböztethetőek egy polárszűrő segítségével. Viszont 
akárcsak egy fénynyaláb esetében, egy foton polarizáci­
ójának síkja tetszőleges lehet, például állhat θ szögben. 
Egy θ szögben polarizált hullám függőleges tengelyű 
amplitúdója sin(θ)-szorosa a teljes amplitúdónak, míg a 
vízszintes tengelyű amplitúdója cos(θ)-szorosa, ezért a 
θ szögben polarizált foton a cos(θ)|0〉 + sin(θ)|1〉 qubit­
állapotnak felel meg, amely a |0〉 és |1〉 qubitállapotok 
szuperpozíciója.

Ismeretes, hogy egy polárszűrő a fénynek csak az 
adott irányú komponensét engedi keresztül, a fény inten­
zitása pedig az amplitúdó négyzetével arányos. Egy fo­
ton, ami egy fényrészecske, már tovább nem bontható, 
ezért az valamekkora valószínűséggel fog csak keresztül­
jutni, egyébként elnyelődik vagy visszatükröződik. Ha 
pl. egy függőleges tengelyű polárszűrőt használunk, 
amely a vízszintes polarizációjú fényt tökéletes tükörként 
visszaveri, akkor az a fotont csak sin2(θ) valószínűséggel 
engedi keresztül és cos2(θ) valószínűséggel visszapattan 
róla. Ha a fotont mindkét irányban egy-egy kamerával 
detektáljuk, akkor valójában egy kvantummechanikai 
mérést hajtunk végre, és a fent leírt valószínűségekkel 
detektáljuk a fényt valamelyik irányban. Viszont mivel 
a  foton egy fényrészecske, a kvantummechanika törvé­
nyeinek megfelelően minden alkalommal pontosan az 
egyik irányban fogjuk érzékelni a fotont, továbbá az át­
haladó foton már függőleges polarizációjú lesz, míg a 
visszapattanó minden esetben vízszintes.

Az egyfoton-qubitek viselkedése könnyen megért­
hető, ha (lézer-) fénnyalábokként gondolunk rájuk. Az 
igazán különleges – klasszikus tapasztalatainktól idegen 
– dolog akkor történik, amikor több (fotonikus) qubit 
együttes állapotát vizsgájuk. Ha van n qubitünk, akkor 
ezek külön-külön lehetnek akár |0〉 vagy |1〉 állapotban. 
Például, ha három párhuzamosan terjedő fotonból az 
első és utolsó függőlegesen polarizált, a középső pedig 
vízszintesen, akkor jelölhetjük ezt az állapotot |101〉-gyel, 
hasonlóképpen az összes függőleges és vízszintes kom­
binációt leírhatjuk egy 3-hosszú bitsorozattal |b1  b2  b3 〉, 
ahol bi d {0,1}. A kvantummechanika törvényei szerint 
viszont ezek a qubitek tetszőlegesen összefonódhatnak, 
vagyis bármely
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2. ábra. Transzverzális hullámok szuperpozíciójának szemléltetése. A θ 
szögben polarizált hullám felbontható függőleges és vízszintes kompo­
nensekre, amelyek amplitúdói trigonometrikus függvényekkel írhatóak le
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rációt, és a mérés után a fotonok a mért irányokban 
lesznek polarizáltak. Tehát a mérés, akárcsak a fenti egy­
fotonos esetben, visszafordíthatatlanul megváltoztatja a 
qubitek állapotát.

Műveletek qubiteken
A kvantumszámítógépek működése logikai szinten rend­
szerint a következő séma szerint megy. Először minden 
qubitet beállítunk egy fix, pl. |0〉 kezdőállapotba, utána 
különböző egy- és kétqubites kvantumkapukkal módo­
sítjuk a qubitek állapotát, végül megmérjük a qubiteket.

A kvantumfizikai műveletek lineárisak, ennek meg­
felelően a kvantumkapuk is azok. Vegyük például a logi­
kai tagadást mint egybites műveletet; NEM: 0 7  1, 1 7  0. 
Az ennek megfelelő X kvantumkapu ugyanígy működik; 
X: |0〉 7 |1〉, |1〉 7  |0〉. A linearitásból pedig az következik, 
hogy ez a kvantumkapu szuperponált állapotokon a kö­
vetkezőképpen működik: α|0〉 + β|1〉 7  α|1〉 + β|0〉.

Általánosságban elmondható, hogy elég ismerni egy 
kvantumkapu hatását a bemeneti qubitek összes nul­
la-egy értékekből álló bitsorozatnak megfelelő bázis­
állapotán, a linearitás miatt ez már egyértelműen meg­
határozza a hatást egy tetszőleges szuperponált állapotra. 

Egy másik természetes követelmény, hogy kvantum­
kapuk csak úgy hathatnak, hogy a qubitek kvantum­
állapota egy új lehetséges kvantumállapotra változzon. 
Mivel kikötöttük, hogy a kvantumállapotok amplitúdói­
nak négyzetösszege 1, ha a kvantumállapotokra úgy gon­
dolunk, mint az amplitúdókból álló vektorra, akkor ez azt 
jelenti, hogy a kvantumkapuk által leírt lineáris művele­
tek megőrzik az euklideszi hosszat. Az ilyen műveleteket 
unitér operátoroknak hívják, amelyek a hosszőrzés miatt 
mindig invertálhatóak (visszafordíthatóak) egy másik 
unitér operátor által. Ez az oka annak, hogy a mérést le­
számítva a kvantumszámítógép műveletei reverzibilisek.

Míg klasszikusan az egyetlen nem triviális egybites 
művelet a logikai tagadás, addig kvantumosan még sok 
más izgalmas egyqubites kapu létezik. Például az Hada­
mard-kapu, amely a következőképpen hat
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Ezen felül vannak még pl. θ szögű forgatásnak megfelelő 
egyqubites kapuk, amelyek a következőképpen hatnak:
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Egy kvantumszámítógépet univerzálisnak hívunk, ha 
tetszőleges unitér operátor megvalósítható rajta. Ehhez 
szükség van legalább egy kétqubites műveletre is, mint 
amilyen például a CNOT (vezérelt negálás), amely a má­
sodik (qu)bit értékét negálja, ha az első (qu)bit értéke 1:

		
00 00 01 01
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10 11 11 10
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Kvantumáramkörök

A kvantumkapukból álló hálózatot, ami leírja a kvan­
tumszámítógép műveleteit, kvantumáramkörnek hívják. 
Például a 3. ábra bal oldalán egy két kvantumkapuból 
álló kvantumáramkör látható. Ez az áramkör azt szemlél­
teti, hogy az Hadamard-kapu önmaga inverze, két lépés 
után visszaérünk a kezdeti |0〉 állapotba. Az első Hada­
mard-kapu után az állapot (1/√

–2 ) (|0〉 + |1〉), amely szu­
perponált állapot a második Hadamard-kapu hatására 
interferenciát eredményez, és így a kezdeti |0〉 állapotba 
jutunk. Ez abból fakad, hogy az (1) egyenletben lévő azo­
nos előjelű amplitúdók konstruktívan erősítik egymást, 
míg az ellentétes előjelűek destruktívan kioltják egymást.

Ha azonban az első Hadamard-kapu után egy mérést 
végzünk, akkor fele-fele eséllyel kapunk |0〉 vagy |1〉 álla­
potot. Ezután a második Hadamard-kaput is végrehajtva 
a két lehetséges végállapot  (1/√

–2 ) (|0〉 ± |1〉) lesz, amelye­
ket megmérve ismét fele-fele eséllyel kapnánk |0〉 vagy 
|1〉 eredményt. Tehát ha mindkét Hadamard-kapu után 
közvetlenül végeznénk egy mérést, akkor egy klasszikus 
véletlent használó áramkört kapnánk, amely fele-fele 
eséllyel vagy megtartja vagy negálja a bit értékét, lásd a 
3. ábra jobb oldalát.

Ugyanez a jelenség figyelhető meg, ha a két Hada­
mard-kapu között nem egy mérést végzünk, hanem „átír­
juk” a felső qubit állapotát egy másik qubitéba egy CNOT 
kapu segítségével. Az áramkör után a qubitjeink mérése 
itt is egyenletes eloszlású véletlen eredményre vezetne:

A 3. ábra és a fenti áramkör teljesen analóg a híres 
kétrés-kísérlethez, ahol a két résen áthaladó elektron 
(vagy akár foton) önmagával interferál az ernyőn. Ha 
azonban megmérjük, hol haladt keresztül az elektron, az 
interferencia eltűnik. Hasonlóképpen itt az interferen­
cia révén kialakuló |0〉 végállapot annak az eredménye, 
hogy az áramkör közepén a |0〉 és |1〉 állapot szuperpozí­
ciója van jelen. Ezzel szemben ha középen egy mérést 
végzünk, akkor a mérési eredménynek megfelelően a |0〉 
vagy |1〉 állapotba kerül a qubit. A felső qubit CNOT-os 
„átírása” egészen hasonló eredményre vezet, és valójában 
tekinthető egyfajta közbenső mérésnek is, hiszen az alsó 
qubit eltárolja, hogy milyen állapotban volt a felső qubit 
a két Hadamard-kapu között, ami a végén egy méréssel 
akár ki is olvasható.

|0H H H |0H

Egyqubites kvantumáramkör

0 50% 50% 50%

Két véletlen bitművelet

3. ábra. Kvantuminterferencia és klasszikus véletlenség

|0H H H
|00H + |01H + |10H  −  |11H

2
|0H

|00H H |00H + |10
√2

CNOT |00H + |11H
√2

H |00H + |10H + |01H  |11H
2

H −
77 7
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Itt érdemes megjegyezni, hogy ilyen és ehhez hasonló 
középiskolás szintű matematikai leírással számos izgal­
mas kvantuminformatikai érdekesség megérthető, lásd 
a  Fizikai Szemle jelenlegi számában [7], illetve a világ 
első, ebben a témában írt középiskolás szakköri jegyze­
tét, amely már magyar fordításban is elérhető [8].

Párhuzamos számítások szinte ingyen?
A kvantumszámítógépek lehetőséget adnak egy újfajta 
kvantumos párhuzamosságra a számítások során. Ez ab­
ból fakad, hogy ha n qubitet veszünk a |0〉 állapotban, és 
mindegyikre alkalmazzuk az Hadamard-kaput, akkor 
az n qubites uniform szuperpozíciót kapjuk, amelyben az 
összes |b1 b2 … bn 〉 bázisállapot amplitúdója 1/√

–2n. Tegyük 
fel, hogy van egy bonyolult f : {0,1}n → {0,1}k bináris függ­
vényünk, amely egy logikai áramkörrel adott! Ha az n 
qubites uniform szuperpozíción felül veszünk k darab 
csupa |0〉 állapotú qubitet, és az együttes állapotra al­
kalmazzuk a logikai áramkörnek megfelelő Uf kvantum­
áramkört, akkor a következő kvantumállapotot kapjuk:

 	
{0 1} {0 1}

1 1
0 0 0 ( )

2 2

n f

n n

UH
n k k

n n
s , s ,

, s, s, f s .
⊗

∈ ∈
∑ ∑  	 (2)

(Az n párhuzamosan ható H kaput H7n-nel jelöljük.)
Ahogy a (2) egyenletből is látszik, a kvantumáram­

kör egyszeri használatával egy olyan kvantumállapotot 
állíthatunk elő, amely valamilyen értelemben tartalmaz 
információt a függvény összes lehetséges kiértékeléséről. 
Viszont nem tudjuk kiolvasni mind a 2n futás eredmé­
nyét, hiszen ha megmérjük a kvantumállapotot, akkor 
csak egy egyenletes eloszlású véletlen n-hosszú bitsoro­
zatot fogunk kapni a hozzá tartozó függvényértékkel. 
Egy hatékony kvantumalgoritmus ezért ilyenkor még 
további lépéseket tesz, hogy az interferencia révén mégis 
ki tudjon valami olyan hasznos információt nyerni a sok 
függvényértékből, amelyet klasszikusan költséges volna 
kiszámítani.

Hatékony kvantumalgoritmusok
Egy kvantumalgoritmus akkor tud a klasszikus számító­
gépeknél hatékonyabban működni, ha jól kiaknázza a 
probléma struktúráját és komplex interferenciák révén 
jut el gyorsan a megoldásra.

Faktorizáció és perióduskeresés
Talán a leghíresebb példa Shor kvantumalgoritmusa 
egész számok faktorizálására, azaz prímtényezőkre bon­
tására. Az egyik leghíresebb titkosítási eljárás, az RSA 
(Rivest–Shamir–Adleman) azon a feltevésen alapszik 
hogy ha veszünk két több száz jegyű véletlen prímszá­
mot, p-t és q-t, akkor a p · q szorzatból gyakorlatilag le­
hetetlen kiszámítani a p és q prímeket, ezért azokat hasz­
nálhatjuk egyfajta privát kulcsként.

Shor algoritmusának egy egyszerű változatával azon­
ban könnyen kiszámítható a két prímtényező. Ehhez 

vegyünk egyenletes eloszlással egy véletlen a d {2, 3, …, 
m – 1} számot, és vizsgáljuk azt az f : N → {0,1,2, …,  m – 1} 
függvényt, amelyet f( j) ≡ a j (mod m) alapján definiálunk. 
Az f függvény klasszikusan hatékonyan kiszámítható az 
ismételt négyzetre emelés módszerével. Továbbá ez a 
függvény periodikus f( j) = f( j + h), és jó eséllyel a pe­
riódushossz maximális lesz: h = (p – 1)(q – 1). Ha h = 
(p – 1)(q – 1) ismert, akkor m = p · q-val együtt kapunk 
két független egyenletet a p és q ismeretlenekre, és ké­
szen vagyunk.

Elegendő tehát, ha a periódushossz kiszámítására 
találunk egy kvantumalgoritmust. Tekintsük most a (2) 
egyenletben lévő n-hosszú bitsorozatokat úgy, mint bi­
nárisan leírt egész számokat 0 és 2n – 1 között, azaz
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Ha az utolsó k qubitet megmérve a mérési eredmény f(r), 
akkor az első n qubit az ezzel konzisztens (qu)bitsoro­
zatok szuperpozíciójára redukálódik. Mivel f( j) értéke 
csak j-nek h-val vett r d {0,1, …, m–1} osztási maradé­
kától függ, a mérés után kapott állapot felírható úgy, 
mint

			

ahol                  . Érezhető, hogy ez a kvantumállapot ele­
gendő információt kell hordozzon a h periódushosszról. 
Viszont ha az állapotot csak egyszerűen megmérnénk, 
akkor mindössze egy véletlen g számot kapnánk, amely­
re f(g) = f(r) teljesül. Ehhez pedig elég lett volna csak egy 
véletlen g számot venni és aztán kiszámítani  f(g) értékét.

Az ötlet az, hogy be kell vetni a jelfeldolgozásban 
széles körben használt Fourier-transzformációt, még­
pedig annak diszkrét verzióját, amely történetesen egy 
2n-dimenziós unitér operátor. Ezen n qubites kvan­
tum-Fourier-transzformáció (QFT) ráadásul közelítő­
leg n log (n) egy- és kétqubites kvantumkapuval imple­
mentálható. Ha ekkora dimenziós vektorokat akarnánk 
Fourier-transzformálni egy klasszikus számítógépen, az 
exponenciálisan sok számítási lépést igényelne!

Ha olyan szerencsénk van, hogy h osztja 2n-et (4. áb­
ra), akkor ez a Fourier-transzformáció a h periódusú 
szuperpozícióból egy 2n/h periódusú szuperpozíciót hoz 
létre, méghozzá r eltolás nélkül! Ha ezután mérünk, ak­
kor már egy c ·(2n/h) alakú számot kapunk egy egyenle­

0

1
( ) ,

r

i r

r i h, f r
=

+ ⋅∑




 
2n

r
r

h
−=  

|amplitúdó| = h/ 2n

r r + h r +2 h · · ·

QFT

|amplitúdó| = 1/h

· · ·

0 2n

h 2 · 2n

h

:

:

4. ábra. A kvantum-Fourier-transzformáció után az amplitúdók abszolút 
értéke és a periódushossz invertálódik, viszont a kezdeti r eltolás eltűnik!
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tes eloszlású véletlen c d {0,1, …, h – 1} számra. A kapott 
számot elosztva 2n-nel megkapjuk a c/h törtet, amelynek 
a nevezője egyszerűsítés után h lesz, feltéve hogy c és h 
relatív prímek (amire jó esély van). Ha h nem osztja 2n-et, 
de n kellően nagy (pl. 2n ≥ h2), akkor egy hasonló, lánc­
törteken alapuló eljárással megállapítható h értéke.

A kvantumszámítás azért tud ilyen hatékony lenni 
itt, mert van egy nagyon erős algebrai struktúra, amely 
lehetőséget ad erős interferencia létrehozására. Több 
más hasonló absztrakt probléma tekintetében is hatal­
mas kvantumos gyorsulást tesz lehetővé az algebrai 
struktúra, viszont ilyen problémák leginkább csak tit­
kosítási eljárások feltörése kapcsán merülnek fel a gya­
korlatban.

Keresés anélkül, hogy minden elemre 
rákérdeznénk

Természetes kérdés, hogy lehet-e az erős struktúra hiá­
nyában is érdemben gyorsítani kvantumosan, amelyre 
Grover algoritmusa ad pozitív választ. Ha van egy S hal­
mazon értelmezett f függvényünk, amelyről mindössze 
annyit tudunk, hogy egy adott y értéket csak egyszer 
vesz fel, akkor klasszikusan várhatóan majdnem az ös�­
szes f (s) értéket ki kell számítanunk, hogy megtaláljuk 
azt az x d S-beli elemet, amelyre f (x) = y. Kvantumosan 
azonban elég csak nagyjából √–|S| alkalommal használni 
az f-et kiszámító (kvantum-) áramkört.

Ez egy sokkal szélesebb körben használható kvan­
tumos gyorsítás, mint pl. Shor faktorizáló algoritmusa, 
viszont az elérhető gyorsítás exponenciális helyett csu­
pán kvadratikus. Gyakorlati alkalmazásokban azonban 
nehéz ezt a csekély előnyt aprópénzre váltani, mivel a 
kvantumszámítógépek jelenleg sok nagyságrenddel las­
sabbak és költségesebbek, mint klasszikus versenytársa­
ik. Az általános nézet szerint ezért a belátható, egy-két 
évtizedes távlaton belül olyan alkalmazásokat kell keres­
nünk, ahol a kvadratikusnál nagyobb kvantumos előny 
érhető el.

Kvantumos bolyongások
A véletlen bolyongások kvantumos megfelelőit régóta 
vizsgálják, mivel ezek sok esetben kvadratikusan gyor­
sabban terjednek, ezáltal hatékonyabb keresést tesznek 
lehetővé Grover algoritmusával rokon módon. Azonban 
ritka esetben ennél jóval nagyobb, exponenciális gyor­
sulásra is lehetőséget adnak ezek a bolyongások, például 
leveleik mentén kétszeresen, véletlenszerűen összekö­

tött n-mélységű bináris fák esetében, mint az 5. ábrán 
látható.

Ennek a gráfnak az a speciális tulajdonsága, hogy a 
be- és kijáratot leszámítva minden csúcshoz három él 
tartozik. Ezért, ha nincs ilyen szépen térben elrendez­
ve a gráf, akkor a bejáratból indulva a gráfot lokálisan 
felderítve nagyon nehéz megtalálni a kijáratot, mert a 
levelek véletlenszerű összeköttetésein átjutva nem lehet 
tudni melyik él visz a be-, és melyik a kijárat felé. Viszont 
a kvantumbolyongás nem igényli az irányok ismeretét: 
az interferencia miatt a gráf úgy viselkedik, mintha egy 
egyszerű vonal lenne, így a kijárat gyorsan megtalálható.

Viszont ez a struktúra nem nagyon jelenik meg ter­
mészetes problémákban. Ami talán még nagyobb gond, 
hogy hiába találja meg a kijáratot a kvantumos bolyon­
gás, úgy tűnik, nem tud megtalálni egy utat a be- és ki­
járat között. Ha ugyanis az utat elkezdi megjegyezni a 
bolyongás, az interferencia a kétrés-kísérlethez hason­
lóan megszűnik.

Sok másik kvantumalgoritmus is hasonló nehézségek­
kel küzd: erős strukturális feltételekhez kötött, és csak 
nagyon limitált információt tud hatékonyan kinyerni.

Számítások magas dimenziós vektorokkal
A kvantumszámítógépek műveletei exponenciálisan 
nagy dimenziós vektorokkal és azokon vett unitér ope­
rátorokkal írhatóak le. Ezekbe az unitér operátorokba 
pedig beágyazhatóak más magas dimenziós lineáris ope­
rátorok is, amelyek számos tudományos számítás során 
hasznosak lehetnek, pl. sokváltozós lineáris egyenlet­
rendszerek vagy differenciálegyenletek numerikus meg­
oldásában. Noha a magas dimenziós vektorokat hűen 
reprezentálják a kvantumszámítógép belső állapotai, 
ezeket csak nehezen, sok-sok mérés és ismételt próbál­
kozás révén lehet egy klasszikusan kezelhető vektorrá 
lefordítani.

Ahhoz, hogy ki tudjuk aknázni ezt az exponenciális 
állapotteret, olyan problémákat kell keresni, ahol a kí­
vánt végeredmény megkapható a vizsgált vektorok né­
hány egyszerű, alacsony dimenziós vetületével. A kvan­
tumszimulációt leszámítva, ahol tipikusan csak néhány 
fizikai mennyiség érdekes, nagyon nehéz ilyen problé­
mákat  találni. Ez annyiban talán nem meglepő, hogy 
Richard Feynman éppen a kvantumos szimulációk le­
hetővé tétele céljából javasolta a kvantumszámítógépek 
kifejlesztését.

Hogyan tovább?
A kvantumos szimuláció már egy évtizeden belül is ke­
csegtet olyan eredményekkel, amelyek klasszikus szá­
mítógépekkel elérhetetlennek tűnnek, és anyagtudomá­
nyi, majd kvantumkémiai áttörésekre is elvezethetnek. 
Bizonyos heurisztikus optimalizálási algoritmusok is 
ígéretesnek tűnnek, de ezen kívül nem látszik más jól 
körvonalazott, lőtávolban lévő gyakorlati alkalmazás. 
Ez a Google kvantumalgoritmusokra specializált ku­
tatócsoportját is aggasztja [9], ezért figyelemfelhívásul 

KIJÁRATBEJÁRAT

5. ábra. Két bináris fa, leveleik mentén összekötve
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az XPRIZE Alapítványon keresztül létrehoztak egy 5 
millió dollár összdíjazású versenyfelhívást, amelynek 
keretében a pályázóknak a kvantumszámítógépek mi­
nél hamarabb elérhető alkalmazásait kell kidolgozniuk. 
2025 decemberében e cikk szerzőjének csapata („Gibbs 
Samplers”) is bekerült a verseny hét döntős csapata közé, 
szintén egy kvantumszimulációs eljárás továbbfejlesz­
tésével, amely akár optimalizációs feladatokra is alkal­
mazható lehet [10].

Összegzésként elmondható, hogy több specifikus 
számítási problémában elengedhetetlen lesz a kvantum­
számítógépek használata. Bár a megbízható kvantum­
számítógépek megépítése egy óriási technológiai áttörés 
lesz, mégsem várható, hogy akkora hatással legyen a 
hétköznapi életre, mint a klasszikus számítógépek for­
radalma tette. Ugyanakkor bizakodásra ad okot, hogy a 
klasszikus számítógépek ekkora térnyerését sem lehetett 
előre jósolni azok hőskorában, és valószínűleg sok fontos 
alkalmazás a kvantumszámítógépek megjelenésével kar­
öltve alakul majd ki.

Irodalom
1.	 Cirac J. I., Zoller P. (1995): Quantum computations with cold 

trapped ions. Physical Review Letters, 74, 4091.
2.	 Zimborás Z. (2022): Kvantumszámítógépek – mítosz és valóság. 

MTA Tudományünnep+, 2022. november 8. (lásd: YouTube, 2022)
3.	 Zimborás Z., Koczor B., Holmes Z., Borrelli E.-M., Gilyén A., 

Huang  H.-Y. et al. (2025): Myths around quantum computation 
before full fault tolerance: What no-go theorems rule out and what 
they don’t. arXiv: 2501.05694.

4.	 Dalzell A. M., McArdle S., Berta M., Bienias P., Chen C.-F., Gilyén  
A., et al. (2025): Quantum algorithms: A survey of applications 
and end-to-end complexities. Cambridge University Press.

5.	 Richards A. felvétele. Köszönet a princetoni Institute for Ad­
vanced Study-nak a közlés engedélyezésért.

6.	 Köszönet a Chalmers Egyetemnek a közlés engedélyezésért.
7.	 Tóth Kristóf (2026): A kvantummechanikai valószínűségekről 

középiskolában. Fizikai Szemle, 2026/1, 27–33.
8.	 Ozols M., Walter M. (2018): Kvantumküldetés. https://gilyen.hu/

kvantumkuldetes.html
9.	 Babbush R., King R., Boixo S., Huggins W., Khattar T., Low G. 

H., et al. (2025): The Grand Challenge of Quantum Applications. 
arXiv: 2511.09124.

10.	 Az XPRIZE Quantum Applications döntősei (2025): https://telex.hu/
techtud/2025/12/11/xprize-quantum-applications-verseny-ma­
gyar-csapat-donto-gibbs-samplers-algoritmus-kvantumfizika

https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/PhysRevLett.74.4091
https://arxiv.org/abs/2501.05694
https://arxiv.org/abs/2501.05694
https://arxiv.org/abs/2501.05694
https://arxiv.org/abs/2501.05694
https://doi.org/10.1017/9781009639651
https://doi.org/10.1017/9781009639651
https://doi.org/10.1017/9781009639651
https://gilyen.hu/kvantumkuldetes.html
https://gilyen.hu/kvantumkuldetes.html
https://arxiv.org/abs/2511.09124
https://arxiv.org/abs/2511.09124
https://arxiv.org/abs/2511.09124
https://telex.hu/techtud/2025/12/11/xprize-quantum-applications-verseny-magyar-csapat-donto-gibbs-samplers-algoritmus-kvantumfizika
https://telex.hu/techtud/2025/12/11/xprize-quantum-applications-verseny-magyar-csapat-donto-gibbs-samplers-algoritmus-kvantumfizika
https://telex.hu/techtud/2025/12/11/xprize-quantum-applications-verseny-magyar-csapat-donto-gibbs-samplers-algoritmus-kvantumfizika
https://www.youtube.com/watch?v=mfKmwqpP8Uk

